win10下配置GPU加速的Keras框架

本文详细介绍了如何在Windows 10系统中配置GPU加速的Keras深度学习环境,包括使用Anaconda搭建Python环境,安装CUDA 8和cuDNN,设置环境变量,以及安装TensorFlow和Keras。通过验证设备查询和带宽测试确认GPU加速成功。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

不久之前,开始学习深度学习,这个时候发现用CPU计算的Keras框架性能明显不够用了,但当时随便弄了一下没能成功实现GPU加速。于是后来一次重装系统,从头详细地重现这个过程。

Python环境搭建

要搭建Python环境,个人觉得真的没有比Anaconda安装更省心的了,而且其内部已经包含了许多常用的包,不用一个一个的安装了。

我选用的是python3.6的64位版本。注意,在引导安装过程中,强烈建议勾选将Python加入环境变量(勾选后这段文本会变红),安装完成后,我们就能正常使用Python了,使用conda list命令,可以查看当前python环境下安装的所有库(如下图)。

conda list

CUDA8安装配置

CUDA8的安装包可直接从NVIDIA官网下载。根据相应的系统选项,我选择的是cuda_8.0.61_win10.exe(大小为1.3G),安装的时候建议选择 自定义 而不是“精简”(从下面的英文解释可以看出,其实这里的精简写成完整应该更贴切,他会安装所有组件并覆盖现有驱动,然而我并不想安装全家桶,何况我的官方显卡驱动比他的新)。

评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值