《算法竞赛-训练指南》第二章-2.27_LA 5009

等会再说我的感想,还是要先说说这道题目:

题目的意思是:已知有n条抛物线,S(x)=ax^2 + b*x + c,定义f(x) = max(si(x)),求出f(x)的最小值,范围是0-1000。

这就比较麻烦了。但是我还是有思路的,因为是求最大最小值,肯定应该是二分,但是怎么二分,我这就不是很清楚了。二分第一个条件不应该是具有顺序么?这样形成的下凹曲线有顺序么?

此题,题解上用到的是三分。顾名思义,三分就是将范围分成三分,根据极值的函数的特点,分成三分就可以逐渐逼近极值。这个你画一个图像就非常清晰的看出来了。但这里我是想说说,那个while的时候的R-L应该大于多少的问题,这个我还真是摸不怎么透,因为好像一个题目和一个题目不怎么一样,有时候1e-5就可以了,有时候却需要1e-10,这你说怎么办?所以还是用作者的方法吧,一般情况下,循环100次就差不多了,只能更精确一些,如果这还是不行的话,那就再增大次数,如果超时了就减小次数,只能够这样了。

在这里还想说说自己的状态,最近可是极其的不怎么样。比较松懈,没有看书,没有学习。其实还是比较羡慕那些聪明的,为世界作出贡献的人的,每个人其实都想成为这样的大英雄,但为什么有的人可以成为,有些人却永远也成为不了呢?原因就是自己的成长经历不同,和自己的控制能力,爱好不同。当然智力也是有一定影响的。

贴出代码:

#include <stdio.h>
#include <string.h>
#include <iostream>
#include <algorithm>
#include <string>

using namespace std;

const int MAXN = 10000 + 11;

int a[MAXN], b[MAXN], c[MAXN];

int N;

double F(double x)
{
	double ans = -100000000000.0;
	for (int i = 0; i < N; i++)
	{
		ans = max(ans, a[i] * x * x + b[i] * x + c[i]);
	}
	return ans;
}

int main()
{
	int T;
	scanf("%d", &T);
	while (T--)
	{
		scanf("%d", &N);
		for (int i = 0; i < N; i++)
		{
			scanf("%d%d%d", &a[i], &b[i], &c[i]);
		}
		double L = 0.0;
		double R = 1000.0;
		double m1, m2;
		while (R - L > 1e-10)
		{
			m1 = L + (R - L) / 3;
			m2 = R - (R - L) / 3;
			if (F(m1) <= F(m2))
			{
				R = m2;
			}
			else
			{
				L = m1;
			}
		}
		printf("%.4f\n", F(R));
	}
//	system("pause");
	return 0;#include <stdio.h>
#include <string.h>
#include <iostream>
#include <algorithm>
#include <string>

using namespace std;

const int MAXN = 10000 + 11;

int a[MAXN], b[MAXN], c[MAXN];

int N;

double F(double x)
{
	double ans = -100000000000.0;
	for (int i = 0; i < N; i++)
	{
		ans = max(ans, a[i] * x * x + b[i] * x + c[i]);
	}
	return ans;
}

int main()
{
	int T;
	scanf("%d", &T);
	while (T--)
	{
		scanf("%d", &N);
		for (int i = 0; i < N; i++)
		{
			scanf("%d%d%d", &a[i], &b[i], &c[i]);
		}
		double L = 0.0;
		double R = 1000.0;
		double m1, m2;
		while (R - L > 1e-10)
		{
			m1 = L + (R - L) / 3;
			m2 = R - (R - L) / 3;
			if (F(m1) <= F(m2))
			{
				R = m2;
			}
			else
			{
				L = m1;
			}
		}
		printf("%.4f\n", F(R));
	}
//	system("pause");
	return 0;
}

}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值