深度学习中标量,向量,矩阵和张量

本文介绍了数学在IT技术中的基本概念,从标量的大小,向量的大小和方向,到矩阵的二维数组形式,再到张量在深度学习中的多维线性关系应用,阐述了这些概念在现代计算中的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.标量(Scalar)

只有大小没有方向,可用实数表示的一个量

2.向量(Vector)

可以表示大小和方向的量

3.矩阵(Matrix)

m行n列,矩阵中的元素可以是数字也可以是符号,在深度学习中一般是二维数组

4.张量(Tensor)

用来表示一些向量、标量和其他张量之间的线性关系的多线性函数,这些线性关系可以是内积、外积、线性映射、或者笛卡尔积。张量通常是大于2维的数字表。

5.Representation

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值