自信息、香农熵、互信息、交叉熵、KL散度备忘录

本文是关于机器学习中信息度量的备忘录,包括自信息、香农熵、互信息、条件熵、交叉熵和KL散度的介绍。重点讨论了KL散度的不对称性及其在参数估计中的应用,通过高斯分布拟合示例进行解释。
摘要由CSDN通过智能技术生成

机器学习中相关信息度量的备忘录

自信息

自信息(self-information)用来衡量单一随机事件发生时所包含的信息量的多寡。

I(pi)=log(pi) I ( p i ) = − l o g ( p i )

香农熵

香农熵是随机事件X的所有可能结果的自信息期望值。

H(x)=ExP[I(x)]=i=1np(xi)I(xi)=i=1np(xi)logb(p(xi)) H ( x ) = E x ∼ P [ I ( x ) ] = − ∑ i = 1 n p ( x i ) I ( x i ) = − ∑ i = 1 n p ( x i ) l o g b ( p ( x i ) )

互信息

互信息用来表示随机事件X和随机事件Y之间的相关性。

I(X,Y)=H(X)+H(Y
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值