昇思25天学习打卡营第1天|快速入门

昇思25天学习打卡营第1天|快速入门

一、基本介绍

1、昇思MindSpore介绍

昇思MindSpore是一个全场景深度学习框架,旨在实现易开发、高效执行、全场景统一部署三大目标。

其中,易开发表现为API友好、调试难度低;高效执行包括计算效率、数据预处理效率和分布式训练效率;全场景则指框架同时支持云、边缘以及端侧场景。

image-20240624185528022

2、华为昇腾AI全栈介绍

昇腾计算,是基于昇腾系列处理器构建的全栈AI计算基础设施及应用,包括昇腾Ascend系列芯片、Atlas系列硬件、CANN芯片使能、MindSpore AI框架、ModelArts、MindX应用使能等。

华为Atlas人工智能计算解决方案,是基于昇腾系列AI处理器,通过模块、板卡、小站、服务器、集群等丰富的产品形态,打造面向“端、边、云”的全场景AI基础设施方案,涵盖数据中心解决方案、智能边缘解决方案,覆盖深度学习领域推理和训练全流程。

image-20240624190213653

3、了解更多

二、快速入门

%%capture captured_output
# 实验环境已经预装了mindspore==2.2.14,如需更换mindspore版本,可更改下面mindspore的版本号
!pip uninstall mindspore -y
!pip install -i https://pypi.mirrors.ustc.edu.cn/simple mindspore==2.2.14
import mindspore
from mindspore import nn
from mindspore.dataset import vision, transforms
from mindspore.dataset import MnistDataset
1、处理数据集

MindSpore提供基于Pipeline的数据引擎,通过数据集(Dataset)数据变换(Transforms)实现高效的数据预处理。在本教程中,我们使用Mnist数据集,自动下载完成后,使用mindspore.dataset提供的数据变换进行预处理。

  1. 本章节中的示例代码依赖download,可使用命令pip install download安装。如本文档以Notebook运行时,完成安装后需要重启kernel才能执行后续代码。
# Download data from open datasets
from download import download

url = (
    "https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/"
    "notebook/datasets/MNIST_Data.zip"
)
path = download(url, "./", kind="zip", replace=True)
Downloading data from https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/datasets/MNIST_Data.zip (10.3 MB)

file_sizes: 100%|███████████████████████████| 10.8M/10.8M [00:00<00:00, 115MB/s]
Extracting zip file...
Successfully downloaded / unzipped to ./
下载数据,MNIST数据集目录结构如下
MNIST_Data
└── train
    ├── train-images-idx3-ubyte (60000个训练图片)
    ├── train-labels-idx1-ubyte (60000个训练标签)
└── test
    ├── t10k-images-idx3-ubyte (10000个测试图片)
    ├── t10k-labels-idx1-ubyte (10000个测试标签)
  1. 数据下载完成后,获得数据集对象。
train_dataset = MnistDataset("MNIST_Data/train")
test_dataset = MnistDataset("MNIST_Data/test")
  1. 打印数据集中包含的数据列名,用于dataset的预处理。
print(train_dataset.get_col_names())
  1. MindSpore的dataset使用数据处理流水线(Data Processing Pipeline),需指定map、batch、shuffle等操作。这里我们使用map对图像数据及标签进行变换处理,然后将处理好的数据集打包为大小为64的batch。
def datapipe(dataset, batch_size):
    image_transforms = [
        vision.Rescale(1.0 / 255.0, 0),
        vision.Normalize(mean=(0.1307,), std=(0.3081,)),
        vision.HWC2CHW(),
    ]
    label_transform = transforms.TypeCast(mindspore.int32)

    dataset = dataset.map(image_transforms, "image")
    dataset = dataset.map(label_transform, "label")
    dataset = dataset.batch(batch_size)
    return dataset
# Map vision transforms and batch dataset
train_dataset = datapipe(train_dataset, 64)
test_dataset = datapipe(test_dataset, 64)
  1. 可使用create_tuple_iteratorcreate_dict_iterator对数据集进行迭代访问,查看数据和标签的shape和datatype。
for image, label in test_dataset.create_tuple_iterator():
    print(f"Shape of image [N, C, H, W]: {image.shape} {image.dtype}")
    print(f"Shape of label: {label.shape} {label.dtype}")
    break
Shape of image [N, C, H, W]: (64, 1, 28, 28) Float32
Shape of label: (64,) Int32
for data in test_dataset.create_dict_iterator():
    print(f"Shape of image [N, C, H, W]: {data['image'].shape} {data['image'].dtype}")
    print(f"Shape of label: {data['label'].shape} {data['label'].dtype}")
    break
Shape of image [N, C, H, W]: (64, 1, 28, 28) Float32
Shape of label: (64,) Int32

更多细节详见数据集 Dataset数据变换 Transforms

2、网络构建

mindspore.nn类是构建所有网络的基类,也是网络的基本单元。当用户需要自定义网络时,可以继承nn.Cell类,并重写__init__方法和construct方法。__init__包含所有网络层的定义,construct中包含数据(Tensor)的变换过程。

# Define model
class Network(nn.Cell):
    def __init__(self):
        super().__init__()
        self.flatten = nn.Flatten()
        self.dense_relu_sequential = nn.SequentialCell(
            nn.Dense(28 * 28, 512),
            nn.ReLU(),
            nn.Dense(512, 512),
            nn.ReLU(),
            nn.Dense(512, 10),
        )

    def construct(self, x):
        x = self.flatten(x)
        logits = self.dense_relu_sequential(x)
        return logits


model = Network()
print(model)
Network<
  (flatten): Flatten<>
  (dense_relu_sequential): SequentialCell<
    (0): Dense<input_channels=784, output_channels=512, has_bias=True>
    (1): ReLU<>
    (2): Dense<input_channels=512, output_channels=512, has_bias=True>
    (3): ReLU<>
    (4): Dense<input_channels=512, output_channels=10, has_bias=True>
    >
  >

更多细节详见网络构建

3、模型训练

在模型训练中,一个完整的训练过程(step)需要实现以下三步:

  1. 正向计算:模型预测结果(logits),并与正确标签(label)求预测损失(loss)。
  2. 反向传播:利用自动微分机制,自动求模型参数(parameters)对于loss的梯度(gradients)。
  3. 参数优化:将梯度更新到参数上。

MindSpore使用函数式自动微分机制,因此针对上述步骤需要实现:

  1. 定义正向计算函数。
  2. 使用value_and_grad通过函数变换获得梯度计算函数。
  3. 定义训练函数,使用set_train设置为训练模式,执行正向计算、反向传播和参数优化。
# Instantiate loss function and optimizer
loss_fn = nn.CrossEntropyLoss()
optimizer = nn.SGD(model.trainable_params(), 1e-2)


# 1. Define forward function
def forward_fn(data, label):
    logits = model(data)
    loss = loss_fn(logits, label)
    return loss, logits


# 2. Get gradient function
grad_fn = mindspore.value_and_grad(forward_fn, None, optimizer.parameters, has_aux=True)


# 3. Define function of one-step training
def train_step(data, label):
    (loss, _), grads = grad_fn(data, label)
    optimizer(grads)
    return loss


def train(model, dataset):
    size = dataset.get_dataset_size()
    model.set_train()
    for batch, (data, label) in enumerate(dataset.create_tuple_iterator()):
        loss = train_step(data, label)

        if batch % 100 == 0:
            loss, current = loss.asnumpy(), batch
            print(f"loss: {loss:>7f}  [{current:>3d}/{size:>3d}]")
  • 除训练外,我们定义测试函数,用来评估模型的性能。
def test(model, dataset, loss_fn):
    num_batches = dataset.get_dataset_size()
    model.set_train(False)
    total, test_loss, correct = 0, 0, 0
    for data, label in dataset.create_tuple_iterator():
        pred = model(data)
        total += len(data)
        test_loss += loss_fn(pred, label).asnumpy()
        correct += (pred.argmax(1) == label).asnumpy().sum()
    test_loss /= num_batches
    correct /= total
    print(f"Test: \n Accuracy: {(100*correct):>0.1f}%, Avg loss: {test_loss:>8f} \n")
  • 训练过程需多次迭代数据集,一次完整的迭代称为一轮(epoch)。在每一轮,遍历训练集进行训练,结束后使用测试集进行预测。打印每一轮的loss值和预测准确率(Accuracy),可以看到loss在不断下降,Accuracy在不断提高。
epochs = 3
for t in range(epochs):
    print(f"Epoch {t+1}\n-------------------------------")
    train(model, train_dataset)
    test(model, test_dataset, loss_fn)
print("Done!")
Epoch 1
-------------------------------
loss: 2.280171  [  0/938]
loss: 1.713686  [100/938]
loss: 0.924682  [200/938]
loss: 0.691890  [300/938]
loss: 0.567936  [400/938]
loss: 0.316085  [500/938]
loss: 0.313522  [600/938]
loss: 0.465552  [700/938]
loss: 0.500910  [800/938]
loss: 0.205086  [900/938]
Test: 
 Accuracy: 90.5%, Avg loss: 0.324189 

Epoch 2
-------------------------------
loss: 0.307672  [  0/938]
loss: 0.306170  [100/938]
loss: 0.144081  [200/938]
loss: 0.370543  [300/938]
loss: 0.331867  [400/938]
loss: 0.329976  [500/938]
loss: 0.148480  [600/938]
loss: 0.387930  [700/938]
loss: 0.176337  [800/938]
loss: 0.300863  [900/938]
Test: 
 Accuracy: 92.7%, Avg loss: 0.251417 

Epoch 3
-------------------------------
loss: 0.204922  [  0/938]
loss: 0.326368  [100/938]
loss: 0.237967  [200/938]
loss: 0.208531  [300/938]
loss: 0.307565  [400/938]
loss: 0.209596  [500/938]
loss: 0.186193  [600/938]
loss: 0.150092  [700/938]
loss: 0.307149  [800/938]
loss: 0.199595  [900/938]
Test: 
 Accuracy: 93.5%, Avg loss: 0.221492 

Done!

更多细节详见模型训练

4、保存模型
  • 模型训练完成后,需要将其参数进行保存。
# Save checkpoint
mindspore.save_checkpoint(model, "model.ckpt")
print("Saved Model to model.ckpt")
Saved Model to model.ckpt
5、加载模型

加载保存的权重分为两步:

  1. 重新实例化模型对象,构造模型。
  2. 加载模型参数,并将其加载至模型上。
# Instantiate a random initialized model
model = Network()
# Load checkpoint and load parameter to model
param_dict = mindspore.load_checkpoint("model.ckpt")
param_not_load, _ = mindspore.load_param_into_net(model, param_dict)
print(param_not_load)
[]

param_not_load是未被加载的参数列表,为空时代表所有参数均加载成功。

  • 加载后的模型可以直接用于预测推理。
model.set_train(False)
for data, label in test_dataset:
    pred = model(data)
    predicted = pred.argmax(1)
    print(f'Predicted: "{predicted[:10]}", Actual: "{label[:10]}"')
    break
Predicted: "[3 3 3 5 0 7 1 0 2 9]", Actual: "[3 3 3 5 0 7 1 0 2 9]"

更多细节详见保存与加载

6、Jupyter运行

image-20240624204512434


本文到此结束,如有疑问或建议,请随时留言讨论。

  • 15
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

五月行秋

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值