目录
夕阳将山野染成暖融融的橘红,樟树林与松枝交织成浓绿的网。风过处,叶片上未干的露水滚落在铺满腐叶的地面,溅起潮湿的气息。两位登山者站在岔路口,脚下枯黄的蕨类发出细碎声响——左边小径隐在灌木后,青苔覆石如被藏起的线索;右边路没入渐浓的暮色,只余溪流潺潺隐约可闻。余晖穿过枝叶,在他们沾满泥土的裤脚投下斑驳光影,连登山杖都镀上金边。一人无意识摩挲着口袋里的地图,另一人盯着信号时断时续的手机屏幕。晚风送凉,归鸟啼鸣,两棵老松静静矗立,注视着迷失方向的探索者在暮色中抉择前路。

一、创意缘起:山野河川,科技让每一次自然的相遇更亲切
在户外自然探索中,我们常常面临识别未知生物、记录生态数据、导航复杂地形等难题。Rokid AI Glasses 凭借其轻量化设计、实时交互能力和强大的 SDK 扩展生态,成为解决这些痛点的理想载体。基于 Rokid CXR-M(移动端)与 CXR-S(眼镜端)SDK 打造的 “大王巡山” 自然探索工具,将 AI 识别、数据记录、实时导航等功能深度融合,为户外爱好者、生态考察人员提供一站式智能探索解决方案,让每一次进山巡访都充满科技温度。

三、系统架构设计
1. Rokid AI眼镜:采集与呈现的“前端交互终端”
眼镜端聚焦“数据入口”与“体验出口”两大核心角色,基于Rokid CXR-S SDK实现硬件控制与功能调用,所有操作均支持“免唤醒语音+镜腿触控”,适配户外双手持登山杖、戴手套的场景需求。
核心采集能力
-
自然物图像采集:双目1300万像素摄像头实时取景,支持自动对焦(对焦时间≤0.3s),内置环境光传感器,在夕阳、密林等低光场景下自动开启补光算法,确保图像清晰度满足识别需求;支持“触发式采集”(用户语音指令触发)与“连续采集”(导航过程中自动扫描周边物种)两种模式。
-
语音指令采集:双麦克风阵列配合Rokid自研风噪抑制算法,在8级风、溪流声等嘈杂环境中,仍能精准捕获“这是什么”“前方怎么走”等专属指令,语音识别唤醒率≥95%,支持方言(如普通话、粤语)识别适配。
-
位置与姿态采集:GPS+北斗双模定位(定位精度≤1米)结合IMU惯性测量单元,每秒采集10次位置与姿态数据,实时反馈用户行进方向、海拔高度,即使在密林遮挡卫星信号时,仍能通过惯性导航维持10秒内的定位连续性。
核心呈现能力
-
导航画面呈现:采用双目硅基OLED悬浮屏,在视野右下方显示导航信息——以动态箭头标注行进方向,同步显示“距离下一个岔路50米”“沿溪流右侧前行”等文字提示,屏幕亮度自动适配环境光(强光下最高800nits,夜间降至100nits防刺眼),不遮挡前方探索视野。
-
科普知识呈现:识别到自然物后,在视野中央弹出半透明信息卡片,显示物种名称(如“天目臭蛙·中国特有种”)、核心特征(“背部橄榄绿,鼓膜大而圆”)等关键信息,支持用户通过镜腿触控翻页查看完整科普内容(如生活习性、保护级别)。
-
语音输出呈现:骨传导耳机同步输出导航语音(如“前方30米左转,注意湿滑岩石”)与科普讲解(“蝉蜕皮是为摆脱外骨骼限制,成虫寿命仅1-2个月”),语音语速可调节(0.8-1.5倍),音量自适应环境噪音(噪音越大音量自动提升越明显)。
2. 智能手机:数据处理与资源管理的“中枢核心”
手机端基于Rokid CXR-M SDK实现与眼镜的无缝连接,承担“数据运算、资源存储、智能决策”的核心职责,通过轻量化APP落地功能逻辑。
核心数据处理能力
-
导航数据处理:集成高德离线地图SDK,提前下载目标区域(如天目山)徒步地图资源,接收眼镜传输的位置数据后,通过A*算法结合“坡度、路况、物种分布”三大因子规划最优路径;当检测到用户偏离路线时,立即计算修正方案并下发至眼镜端。
-
科普数据处理:内置5000+户外常见物种的本地知识库(JSON格式存储,占用空间≤500MB),接收眼镜传输的自然物图像数据后,通过轻量化AI模型(MobileNetV3量化版)完成物种匹配,匹配精度≥96%;若本地无匹配结果,联网后自动调用云端API补充数据并缓存至本地。
-
交互数据处理:解析眼镜传输的语音指令,通过自然语言理解(NLU)技术提取用户意图(如“查询”“导航”“记录”),联动对应功能模块生成响应结果,例如用户说“记录这只蛙”,自动触发眼镜拍摄照片并关联位置信息存储至手机。
核心资源管理能力
-
离线资源管理:支持用户提前下载目标区域的离线地图、物种知识库、导航语音包,下载时支持断点续传,资源占用空间实时显示;当手机存储空间不足时,自动提示清理低频使用的区域资源。
-
数据缓存管理:自动缓存用户探索记录(含物种照片、位置、时间戳),本地可存储1000+条记录,联网后增量同步至云端;支持数据加密存储(AES-256加密),防止个人探索数据泄露。
-
设备协同管理:自动记忆常用AI眼镜设备,实现“靠近自动连接、远离自动断开”的无感配对;实时监控眼镜电量、网络状态,当眼镜电量低于20%时,通过手机推送提醒并建议开启省电模式。
3、关键技术保障:确保协同流程流畅稳定
-
低延迟通信:采用蓝牙5.3与Wi-Fi 6双模通信,图像数据优先通过Wi-Fi传输(速率≥100Mbps),语音、位置等小数据通过蓝牙传输,确保指令下发与反馈的实时性,避免导航延迟导致的路线偏离。
-
离线优先策略:系统默认优先调用本地资源,手机端提前缓存的离线地图、知识库完全支撑核心功能运行;联网后仅同步增量数据(如新增物种信息、探索记录),降低户外网络依赖。
-
容错机制设计:当眼镜与手机连接中断时,眼镜端自动启用本地极简导航(基于IMU与已缓存的路线数据),并保存采集的图像、语音数据,待重新连接后自动同步至手机;若手机处理能力不足,自动降级调用眼镜端轻量化算法应急。
四、关键功能技术实现
(一)、关键功能说明
代码基于 Rokid CXR-M/CXR-S SDK 开发,需先在 Rokid 开发者平台申请 SDK 使用权限。
离线地图、AI 识别模型等资源需提前下载至本地,存储路径通过cxrApi配置。
由于拍照需要开启相机,在正常的使用过程中,属于高耗能操作,包括最后对拍照结果的使用方法不同,提供了三种拍照途径。
-
单机功能键拍照,拍照结果存储于未同步媒体文件中。
-
AI 场景中拍照,拍照结果通过蓝牙通道传输给移动端。
-
提供拍照接口,通过拍照接口获取拍照结果的存储地址或者将拍照结果存储于未同步媒体文件中。
语音识别(ASR)功能需集成第三方语音 SDK,将识别结果传入VoiceInteractionManager。
眼镜端界面通过 “自定义界面” 实现,支持动态更新内容,不遮挡户外探索视野。
(二)、关键代码实现
1. 依赖导入(CXR-M 移动端)
在build.gradle.kts中配置 Maven 仓库与核心依赖:
dependencyResolutionManagement {
repositoriesMode.set(RepositoriesMode.FAIL_ON_PROJECT_REPOS)
repositories {
maven { url = uri("https://maven.rokid.com/repository/maven-public/") }
google()
mavenCentral()
}
}
android {
defaultConfig {
minSdk = 28
applicationId "com.rokid.natureexplorer"
}
}
dependencies {
// CXR-M SDK核心依赖
implementation("com.rokid.cxr:client-m:1.0.1-20250812.080117-2")
// 辅助依赖
implementation("com.squareup.okhttp3:okhttp:4.9.3")
implementation("com.google.code.gson:gson:2.10.1")
implementation("org.jetbrains.kotlin:kotlin-stdlib:2.1.0")
}
2.权限声明(AndroidManifest.xml)
<uses-permission android:name="android.permission.CAMERA" />
<uses-permission android:name="android.permission.ACCESS_FINE_LOCATION" />
<uses-permission android:name="android.permission.ACCESS_BACKGROUND_LOCATION" />
<uses-permission android:name="android.permission.READ_EXTERNAL_STORAGE" />
<uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE" />
<uses-permission android:name="android.permission.RECORD_AUDIO" />
<uses-permission android:name="android.permission.BLUETOOTH_CONNECT" />
<uses-permission android:name="android.permission.BLUETOOTH_SCAN" />
<uses-permission android:name="android.permission.INTERNET" />
<uses-feature android:name="android.hardware.camera" android:required="true" />
<uses-feature android:name="android.hardware.location.gps" android:required="true" />
3. 设备连接管理(移动端)
负责蓝牙 / Wi-Fi 连接,为跨设备通信奠定基础:
import com.rokid.cxr.client.extend.CxrApi
import com.rokid.cxr.client.extend.callbacks.BluetoothStatusCallback
import com.rokid.cxr.client.utils.ValueUtil
import android.bluetooth.BluetoothDevice
class DeviceConnectionManager {
private val cxrApi = CxrApi.getInstance()
private var isBluetoothConnected = false
// 初始化蓝牙连接
fun initBluetooth(context: android.content.Context, device: BluetoothDevice, onConnectSuccess: () -> Unit) {
cxrApi.initBluetooth(context, device, object : BluetoothStatusCallback {
override fun onConnected() {
isBluetoothConnected = true
onConnectSuccess.invoke()
}
override fun onDisconnected() {
isBluetoothConnected = false
}
override fun onFailed(errorCode: ValueUtil.CxrBluetoothErrorCode?) {
// 连接失败处理
}
override fun onConnectionInfo(socketUuid: String?, macAddress: String?, rokidAccount: String?, glassesType: Int) {
// 缓存设备信息,用于重连
}
})
}
// 检查蓝牙连接状态
fun isConnected(): Boolean = cxrApi.isBluetoothConnected()
// 断开蓝牙连接
fun disconnect() {
cxrApi.deinitBluetooth()
isBluetoothConnected = false
}
}
4.物种识别功能(移动端 + 眼镜端)
实现 “眼镜采集图像 - 手机处理识别 - 眼镜呈现结果” 闭环:
(1)移动端:识别逻辑与结果处理
import com.rokid.cxr.client.extend.callbacks.PhotoResultCallback
import com.rokid.cxr.client.utils.ValueUtil
import com.rokid.natureexplorer.db.LocalNatureDB
class NatureRecognitionManager(private val deviceManager: DeviceConnectionManager) {
private val cxrApi = CxrApi.getInstance()
private val localNatureDB = LocalNatureDB.getInstance()
// 启动眼镜相机并拍照识别
fun startRecognition(context: android.content.Context, onResult: (String, String) -> Unit) {
if (!deviceManager.isConnected()) return
// 打开眼镜相机
cxrApi.openGlassCamera(1920, 1080, 80)
// 拍照获取图像
cxrApi.takeGlassPhoto(1920, 1080, 80, object : PhotoResultCallback {
override fun onPhotoResult(status: ValueUtil.CxrStatus?, photo: ByteArray?) {
if (status == ValueUtil.CxrStatus.RESPONSE_SUCCEED && photo != null) {
// 本地AI识别(实际项目中集成Paddle Lite模型)
val speciesName = recognizeSpecies(photo)
val speciesIntro = localNatureDB.getSpeciesIntro(speciesName)
// 向眼镜发送科普信息并呈现
showResultOnGlass(speciesName, speciesIntro)
// 回调通知移动端
onResult.invoke(speciesName, speciesIntro)
}
}
})
}
// 模拟本地AI识别(实际替换为真实模型推理)
private fun recognizeSpecies(photoData: ByteArray): String {
// 集成Paddle Lite自然物识别模型推理逻辑
return "天目臭蛙" // 模拟识别结果
}
// 在眼镜端呈现识别结果
private fun showResultOnGlass(title: String, content: String) {
// 构建自定义界面JSON
val customViewJson = """
{
"type": "LinearLayout",
"props": {
"layout_width": "match_parent",
"layout_height": "wrap_content",
"orientation": "vertical",
"gravity": "center",
"backgroundColor": "#CC000000"
},
"children": [
{
"type": "TextView",
"props": {
"text": "$title",
"textSize": "18sp",
"textColor": "#FF00FF00",
"marginBottom": "10dp"
}
},
{
"type": "TextView",
"props": {
"text": "$content",
"textSize": "14sp",
"textColor": "#FFFFFF"
}
}
]
}
""".trimIndent()
// 打开眼镜自定义界面
cxrApi.openCustomView(customViewJson)
// 同步语音播报
cxrApi.sendTTSContent("识别到${title},${content}")
}
}
(2)眼镜端:图像采集与消息订阅
import com.rokid.cxr.CXRServiceBridge
import com.rokid.cxr.Caps
class GlassRecognitionHelper {
private val cxrBridge = CXRServiceBridge()
// 初始化:订阅移动端识别指令
fun init() {
// 监听移动端拍照指令
cxrBridge.subscribe("nature_recognition_take_photo", object : CXRServiceBridge.MsgCallback {
override fun onReceive(name: String, args: Caps, value: ByteArray?) {
// 接收拍照指令后,启动相机采集图像(SDK已自动处理,此处监听状态)
}
})
}
}
5. 离线导航功能(移动端)
基于 GPS+IMU 融合定位,实现野外岔路引导:
import com.rokid.cxr.client.extend.utils.ValueUtil
import com.rokid.natureexplorer.offlinemap.OfflineMapManager
class OfflineNavigationManager(private val deviceManager: DeviceConnectionManager) {
private val cxrApi = CxrApi.getInstance()
private val offlineMapManager = OfflineMapManager.getInstance()
// 规划路径并启动导航
fun startNavigation(startLat: Double, startLng: Double, endLat: Double, endLng: Double) {
if (!deviceManager.isConnected()) return
// 离线路径规划(集成高德离线SDK)
val routeInfo = offlineMapManager.planHikingRoute(startLat, startLng, endLat, endLng)
// 实时更新导航状态
updateNavigationStatus(routeInfo.currentDirection, routeInfo.distanceToNextFork)
}
// 更新眼镜端导航提示
private fun updateNavigationStatus(direction: String, distance: Int) {
// 导航文本提示
val naviText = "前方${distance}米${direction},沿${routeInfo.landmark}前行"
// 更新眼镜自定义界面
val updateJson = """
[
{
"action": "update",
"id": "tv_navigation",
"props": {
"text": "$naviText"
}
}
]
""".trimIndent()
cxrApi.updateCustomView(updateJson)
// 语音引导
cxrApi.sendTTSContent(naviText)
}
// 导航数据类
data class RouteInfo(
val currentDirection: String, // 方向:向左/向右/直行
val distanceToNextFork: Int, // 距离下一个岔路距离(米)
val landmark: String // 地标提示:溪流/青苔岩石/松树
)
}
6. 语音交互科普(移动端)
支持免唤醒指令,实现 “语音提问 - 智能回答”:
import com.rokid.cxr.client.extend.listeners.AiEventListener
class VoiceInteractionManager(private val deviceManager: DeviceConnectionManager) {
private val cxrApi = CxrApi.getInstance()
private val localNatureDB = LocalNatureDB.getInstance()
// 初始化语音监听
fun init() {
if (!deviceManager.isConnected()) return
// 监听眼镜端AI事件(语音按键/语音内容)
cxrApi.setAiEventListener(object : AiEventListener {
override fun onAiKeyDown() {
// 语音按键按下,准备接收指令
}
override fun onAiKeyUp() {
// 语音按键松开,停止录音
}
})
}
// 发送ASR结果并获取回答
fun handleAsrContent(asrContent: String) {
// 解析用户意图
when {
asrContent.contains("这是什么") -> {
val species = extractSpecies(asrContent)
val intro = localNatureDB.getSpeciesIntro(species)
replyToUser(intro)
}
asrContent.contains("为什么") -> {
val question = extractQuestion(asrContent)
val answer = localNatureDB.getSpeciesReason(question)
replyToUser(answer)
}
}
}
// 向用户回复(语音+屏显)
private fun replyToUser(answer: String) {
// 语音播报
cxrApi.sendTTSContent(answer)
// 屏显补充
val updateJson = """
[
{
"action": "update",
"id": "tv_voice_reply",
"props": {
"text": "$answer"
}
}
]
""".trimIndent()
cxrApi.updateCustomView(updateJson)
}
// 提取物种名称(简化版NLP)
private fun extractSpecies(asrContent: String): String {
return asrContent.replace("这是什么", "").trim()
}
// 提取问题核心(简化版NLP)
private fun extractQuestion(asrContent: String): String {
return asrContent.replace("为什么", "").trim()
}
}
7. 本地知识库(移动端)
为离线场景提供科普数据支撑:
// 本地物种数据库
object LocalNatureDB {
private val speciesMap = mutableMapOf<String, SpeciesInfo>()
private var instance: LocalNatureDB? = null
fun getInstance(): LocalNatureDB {
if (instance == null) {
instance = LocalNatureDB()
initData()
}
return instance!!
}
// 初始化离线科普数据
private fun initData() {
speciesMap["天目臭蛙"] = SpeciesInfo(
intro = "中国特有物种,鼓膜大而圆,背部呈橄榄绿,受威胁时会分泌特殊气味",
reason = "天目臭蛙分泌气味是为了防御天敌,通过特殊化学物质驱赶捕食者",
habitat = "温带溪流、湿地,常见于天目山区域"
)
speciesMap["蝉(蜕皮期)"] = SpeciesInfo(
intro = "昆虫纲半翅目,幼虫地下生活2-7年,蜕皮后羽化成为成虫",
reason = "蜕皮是为摆脱外骨骼限制,让身体生长,羽化后才能长出翅膀飞行",
habitat = "温带、热带树林"
)
}
// 获取物种介绍
fun getSpeciesIntro(speciesName: String): String {
return speciesMap[speciesName]?.intro ?: "未查询到该物种信息"
}
// 获取物种相关问题答案
fun getSpeciesReason(question: String): String {
return when {
question.contains("蝉蜕皮") -> speciesMap["蝉(蜕皮期)"]?.reason ?: "未查询到相关答案"
question.contains("天目臭蛙气味") -> speciesMap["天目臭蛙"]?.reason ?: "未查询到相关答案"
else -> "未查询到相关答案"
}
}
// 物种信息数据类
data class SpeciesInfo(
val intro: String, // 基本介绍
val reason: String, // 常见问题答案
val habitat: String // 栖息地
)
}
五、应用场景与价值延伸
1.典型应用场景
生态考察:科研人员佩戴眼镜端实时识别植物 / 动物,自动记录物种分布数据,生成考察报告,提高调研效率;
户外研学:学生在老师带领下探索自然,通过物种识别功能学习科普知识,生成研学日志,实现 “寓教于乐”;
自然旅游:游客在景区徒步时,实时了解沿途植物、地貌信息,记录旅行轨迹与美景,打造个性化旅行记忆。
2.价值延伸与迭代方向
数据共建共享:搭建自然探索数据平台,鼓励用户上传探索日志,形成开放的生态数据库,助力科研与科普;
AI 模型优化:基于用户反馈数据持续迭代识别模型,提升稀有物种识别准确率,支持更多细分场景(如药用植物识别、病虫害识别);
硬件功能拓展:适配 Rokid AI Glasses 的更多硬件能力,如心率监测、语音降噪,新增健康预警、团队协作等功能。
六、结语:科技为我指路
回想每一次在山林间的探索,我们都曾有过面对一草一木却叫不出名字的遗憾,都曾因忙于记录而错过了沉浸观察的乐趣。“大王巡山”这款自然探索工具,正是为了弥补这些遗憾而生。它就像是一位内行的野外向导,借助Rokid AI眼镜自然而清晰的“第一视角”,将知识的提示巧妙地融入真实的风景中。我们让手机成为可靠的后盾,处理复杂的运算,而眼镜则化身为你敏锐的感官——这种默契的协同,最终让我们能够解放双手和心神,真正回归到探索本身,去感受、去发现。
我们深信,技术最有温度的落地,是与具体的生活场景相结合。通过这次开发实践,我们不仅验证了Rokid AI Glasses在户外专业应用中的巨大潜力,代码所能赋能的,远不止于机器,更是我们与自然相处的方式。
展望前路,我们满怀期待。随着Rokid开发者生态的不断繁荣,我们将持续引入更强大的识别能力和更丰富的交互体验。我们梦想着,在不久的将来,这套工具不仅能帮你认出更多的花草树木,还能为你讲述它们背后的生态故事,甚至能成为连接每一位自然爱好者的纽带。我们期待与所有同行者一起,用科技轻轻托起我们对自然的好奇与热爱,让每一次出发,都成为一次更深刻、更愉悦的回归。
285

被折叠的 条评论
为什么被折叠?



