Self -Supervised Learning
个人学习笔记:
BART使用了MASS中的所有方法(五种),结果表现更好
实验:将DNA表示中的A、T、C和G随机赋英文单词,将每个类别组成一个文本,利用BERT进行分类。
实验结论:就算给BERT一个乱七八糟毫无逻辑的句子,对其进行分类,也可以得到一个较好的结果。
多语言BERT
以下是资料量为200K时的:
资料量为1000K时:
**实验:**输入英文时,输出仍为英文;输入中文输出也为中文。输入英文若有空格时,并没有输出中文,以此推论中文和英文向量间仍然具有差距。
**想法:**得出中文和英文向量间的 平均差距,令得到的英文向量加上差距向量,使其转化为中文向量。
测验例子:
GPT系列
GPT经过大量数据的训练后,提供一个句子(很短的信息),他可预测出之后的数据。(可不断向后预测,形成一个文本)
实验结果:
Beyond Text
不仅应用于文本上,还可应用于语音、视频上。