机器学习之决策树算法

 

0 介绍

决策树是一个有监督分类与回归算法。 (本文只介绍分类,回归还没搞懂)

决策树:是一种树形结构,其中每个内部节点表示一个属性上的判断,每个分支代表一个判断结果的输出,最后每个叶节点代表一种分类结果,本质是一颗由多个判断节点组成的树。

决策树的分类:主要取决于目标变量的类型。

  • 离散性决策树:离散性决策树,其目标变量是离散的,如性别:男或女等;
  • 连续性决策树:连续性决策树,其目标变量是连续的,如工资、价格、年龄等;

决策树的变量可以有两种: 
1) 数字型(Numeric):变量类型是整数或浮点数,如前面例子中的“年收入”。用“>=”, “>”,“<”或“<=”作为分割条件

(排序后,利用已有的分割情况,可以优化分割算法的时间复杂度)。 
2) 名称型(Nominal):类似编程语言中的枚举类型,变量只能重有限的选项中选取,比如前面例子中的“婚姻情况”,只能是“单身”,“已婚”或“离婚”,使用“=”来分割。

1 概念

 1. 熵

物理学上,熵 Entropy 是“混乱” 程度的量度。 系统越有序,熵值越低;系统越混乱或者分散,熵值越高 
信息理论: 
1、当系统的有序状态一致时,数据越集中的地方熵值越小,数据越分散的地方熵值越大。这是从信息的完整性上进行的描述。 
2、当数据量一致时,系统越有序,熵值越低;系统越混乱或者分散,熵值越高。这是从信息的有序性上进行的描述。  

假如事件A的分类划分是\left ( A_{1},A_{2}...A_{n}\right ),每部分发生的概率是\left ( p_{1} ,p_{2}...p_{n}\right ),那信息熵定义为公式如下: 
        

  2. 信息增益

   信息增益为以某特征划分数据集前后的熵的差值。使用划分前后集合熵的差值来衡量使用当前特征对于样本集合D划分效果的好坏

             ID3, 信息增益最大作为最优特征)

D:为样本集,Ent(D):整体熵

a:离散型属性, v: 是a属性里可能的取值节点
D^{v}:第v个分支节点包含了D中所有在属性a上取值为a\^v的样本

缺点:信息增益偏向取值较多的特征(原因:当特征的取值较多时,根据此特征划分更容易得到纯度更高的子集,因此划分后的熵更低,即不确定性更低,因此信息增益更大)

3. 信息增益比      

定义:特征A对训练数据集D的信息增益比GainRatio\left (S_{A},A \right )定义为其信息增益Gain\left ( S_{A} ,A\right )与训练数据集D的经验熵之比:

             

    其中,      

信息增益比本质: 信息增益的基础乘上一个惩罚参数。特征个数较多时,惩罚参数较小;特征个数较少时,惩罚参数较大。

缺点:信息增益比偏向取值较少的特征

原因:  当特征取值较少时splitInformation\left (S_{A},A \right )的值较小,因此其倒数较大,因而信息增益比较大。因而偏向取值较少的特征

    使用信息增益比(例:C4.5):基于以上缺点,

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值