python opencv比较图片相似度

本文介绍了使用OpenCV在Python中比较图像相似度的三种算法:均值哈希、三直方图和单通道直方图。通过计算图像的哈希值、直方图差异和相关性来评估图像的相似度,适用于图像识别和比较任务。
摘要由CSDN通过智能技术生成

目录

一:均值哈希算法

二:三直方图算法

三:单通道直方图


一:均值哈希算法

均值哈希算法是一种快速比较图像相似度的方法。它首先将图像转化为灰度图像,然后计算图像的均值,接着将每个像素的灰度值与均值进行比较,生成一个64位的哈希值。

在Python中,我们可以使用OpenCV库来读取和处理图像,然后利用NumPy库来进行数值计算。以下是一个简单的示例,演示如何使用均值哈希算法计算两个图像的相似度:


def ahash(image):
    # 将图像转化为灰度图像
    gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
    # 缩小图像,加速计算
    small = cv2.resize(gray, (8, 8), interpolation=cv2.INTER_AREA)
    # 计算均值
    mean = np.mean(small)
    # 初始化哈希值
    hash_value = 0
    # 对每个像素进行处理
    for i in range(8):
        for j in range(8):
            # 将像素

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

攻城狮的梦

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值