目录
一:均值哈希算法
均值哈希算法是一种快速比较图像相似度的方法。它首先将图像转化为灰度图像,然后计算图像的均值,接着将每个像素的灰度值与均值进行比较,生成一个64位的哈希值。
在Python中,我们可以使用OpenCV库来读取和处理图像,然后利用NumPy库来进行数值计算。以下是一个简单的示例,演示如何使用均值哈希算法计算两个图像的相似度:
def ahash(image):
# 将图像转化为灰度图像
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
# 缩小图像,加速计算
small = cv2.resize(gray, (8, 8), interpolation=cv2.INTER_AREA)
# 计算均值
mean = np.mean(small)
# 初始化哈希值
hash_value = 0
# 对每个像素进行处理
for i in range(8):
for j in range(8):
# 将像素