1、之前误解一:
多通道的卷积和我之前理解的不一样。只是对应通道相乘,最后再加?那我之前的残差网络具体卷积核的大小及深度是多少???
2、之前误解二:
不论输入图像大小参数个数是不会发生改变的!!!(但计算量会改变???)
3、卷积网络优化的是卷积核的参数?
卷积不仅限于对原始输入的卷积。蓝色方块是在原始输入上进行卷积操作,使用了6个filter得到了6个提取特征图。绿色方块还能对蓝色方块进行卷积操作,使用了10个filter得到了10个特征图。每一个filter的深度必须与上一层输入的深度相等。
4、解释了计算使的内存消耗+参数量:
- 参数看来就是卷积核的各个参数!即权重?
- 那么各个神经元节点的值在网络中又怎么表示呢?怎么调用呢?