关于卷积网络的几个误解 及 参数计算

1、之前误解一:

多通道的卷积和我之前理解的不一样。只是对应通道相乘,最后再加?那我之前的残差网络具体卷积核的大小及深度是多少???

2、之前误解二:

不论输入图像大小参数个数是不会发生改变的!!!(但计算量会改变???)

3、卷积网络优化的是卷积核的参数?

卷积不仅限于对原始输入的卷积。蓝色方块是在原始输入上进行卷积操作,使用了6个filter得到了6个提取特征图。绿色方块还能对蓝色方块进行卷积操作,使用了10个filter得到了10个特征图。每一个filter的深度必须与上一层输入的深度相等

 

4、解释了计算使的内存消耗+参数量:

  1. 参数看来就是卷积核的各个参数!即权重?
  2. 那么各个神经元节点的值在网络中又怎么表示呢?怎么调用呢?

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值