自适应编码机及多层感知机

 4_1code 自编码机

# -*- coding: utf-8 -*-
# zhibianmaji he duochengganzhiji
import numpy as np
import sklearn.preprocessing as prep
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data

def xavier_init(fan_in,fan_out,constant=1):
    low = -constant * np.sqrt(6.0/(fan_in+fan_out))
    high = constant * np.sqrt(6.0/(fan_in+fan_out))
    return tf.random_uniform((fan_in,fan_out),minval=low,maxval=high,dtype=tf.float32)

class AdditiveGaussianNoiseAutoencoder(object):
    def __init__(self,n_input,n_hidden,transfer_function=tf.nn.softplus,
                 optimizer = tf.train.AdadeltaOptimizer(),scale=0.1):
        self.n_input = n_input
        self.n_hidden = n_hidden
        self.transfer = transfer_function
        self.scale = tf.placeholder(tf.float32)
        self.training_scale = scale
        network_weights = self._initialize_weights()
        self.weights = network_weights
        
        self.x = tf.placeholder(tf.float32,[None,self.n_input])
        self.hidden = self.transfer(tf.add(tf.matmul(
                self.x + scale*tf.random_normal((n_input,)),
                self.weights['w1']),self.weights['b1']))
        self.reconstruction = tf.add(tf.matmul(self.hidden,
                                               self.weights['w2']),self.weights['b2'])
        
        self.cost = 0.5 * tf.reduce_sum(tf.pow(tf.subtract(self.reconstruction,self.x),2.0))
        self.optimizer = optimizer.minimize(self.cost)
        
        init = tf.global_variables_initializer()
        self.sess = tf.Session()
        self.sess.run(init)
        
    def _initialize_weights(self):
        all_weights = dict()
        all_weights['w1'] = tf.Variable(xavier_init(self.n_input,self.n_hidden))
        all_weights['b1'] = tf.Variable(tf.zeros([self.n_hidden],dtype = tf.float32))
        all_weights['w2'] = tf.Variable(tf.zeros([self.n_hidden,self.n_input],dtype = tf.float32))
        all_weights['b2'] = tf.Variable(tf.zeros([self.n_input],dtype = tf.float32))
        return all_weights
    
    def partial_fit(self, X):
        cost,opt = self.sess.run((self.cost,self.optimizer),feed_dict={self.x:X,self.scale:self.training_scale})
        return cost
    
    def calc_total_cost(self,X):
        return self.sess.run(self.cost,feed_dict={self.x:X,self.scale:self.training_scale})
    
    def transform(self,X):
        return self.sess.run(self.hidden,feed_dict={self.x:X,self.scale:self.training_scale})
    
    def generate(self,hidden=None):
        if hidden is None:
            hidden = np.random.normal(size = self.weights["b1"])
        return self.sess.run(self.reconstruction,feed_dict = {self.hidden:hidden})
        
    def reconstruct(self,X):
        return self.sess.run(self.reconstruction,feed_dict={self.x:X,self.scale:self.training_scale})

    def getWeights(self):
        return self.sess.run(self.weights['w1'])

    def getBiases(self):
        return self.sess.run(self.weights['b1'])

mnist = input_data.read_data_sets('MNIST_data',one_hot = True)
def standard_scale(X_train,X_test):
    preprocessor = prep.StandardScaler().fit(X_train)
    X_train = preprocessor.transform(X_train)
    X_test = preprocessor.transform(X_test)
    return X_train,X_test

def get_random_block_from_data(data,batch_size):
    start_index = np.random.randint(0,len(data)-batch_size)
    return data[start_index:(start_index+batch_size)]

X_train,X_test = standard_scale(mnist.train.images,mnist.test.images)
n_samples = int(mnist.train.num_examples)
training_epochs = 20
batch_size = 128
display_step =1

autoencoder = AdditiveGaussianNoiseAutoencoder(n_input=784,
                                               n_hidden=200,
                                               transfer_function=tf.nn.softplus,
                                               optimizer=tf.train.AdamOptimizer(learning_rate=0.001),
                                               scale=0.01)
for epoch in range(training_epochs):
    avg_cost = 0
    total_batch = int(n_samples/batch_size)
    for i in range(total_batch):
        batch_xs = get_random_block_from_data(X_train,batch_size)
        cost = autoencoder.partial_fit(batch_xs)
        avg_cost += cost/n_samples*batch_size
    if epoch % display_step == 0:
        print("Epoch:",'%04d'%(epoch+1),"cost=","{:.9f}".format(avg_cost))
    print("Total cost: "+str(autoencoder.calc_total_cost(X_test)))

        

 

在将FFANet算法的CA模块与Transformer模块相结合之前,首先需要了解FFANet算法和Transformer模块的工作原理和结构。 FFANet算法是一种用于图像分类任务的卷积神经网络模型,其核心是基于注意力机制的通道注意力(Channel Attention, CA)模块。CA模块通过对每个通道进行自适应的特征重要性加权,从而提升模型对不同通道的关注度。 Transformer是一种用于序列建模任务的注意力机制模型,其核心是自注意力(Self-Attention)机制和多层感知机(MLP)。自注意力机制可以捕捉序列中不同位置之间的依赖关系,而MLP则用于对注意力权重进行非线性变换。 要将CA模块与Transformer模块相结合,可以考虑在Transformer的编码器或解码器中添加CA模块。具体步骤如下: 1. 在Transformer的编码器或解码器中,将自注意力机制替换为CA模块。CA模块可以接收输入特征并生成通道注意力权重。 2. 在CA模块中,可以使用全局平均池化或全局最大池化来获取特征图中每个通道的全局感受野,并计算每个通道的注意力权重。 3. 将CA模块生成的注意力权重与Transformer模块中的注意力权重进行融合。可以使用加权平均或者级联方式来融合两者的注意力权重。 4. 经过注意力融合后,可以将特征传递给Transformer网络的下一层进行进一步处理,如多层感知机等。 这样,通过将CA模块与Transformer模块相结合,可以同时利用CA模块的通道注意力和Transformer模块的自注意力来提取特征并进行序列建模任务。具体的实现方式可能需要根据具体任务和网络结构进行调整和优化。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值