# InSAR学习（一） 基本原理 Basics of Interferometric SAR (InSAR)

The technique that makes use of interference of electromagnetic waves that are transmitted and received by a SAR is called interferometric synthetic aperture radar, or InSAR. Very simply, InSAR involves the use of two or more SAR images of the same area—one arbitrarily chosen reference or master image and one or more additional images referred to as slave images—to extract land surface topography and deformation patterns.

## 1 高程和斜距差的关系

InSAR基本原理可以下图为例进行说明。设天线相位中心A 1  $A_1$的高程为H $H$，地面点P的高程为h $h$，天线相位中心A 1  $A_1$对目标点 成像时的侧视角为θ $\theta$，两天线相位中心的距离为基线长度B $B$，基线与水平方向的夹角为α $\alpha$R $R$R     $R^{'}$分别为两天线相位中心到目标点P $P$的斜距，δR $\delta R$为斜距差（δR=R    R $\delta R =R^{'} - R$）。

R=D S 0  +M y y p

h=HRcosθ

θ=π/2+αβ

cosβ=R 2 +B 2 R   2 2RB =R 2 +B 2 (R+δR) 2 2RB

β=arccos(R 2 +B 2 (R+δR) 2 2RB )=arccos(δRB +B2R δR 2 2RB )

h=HRcosθ=HRcos(π2 +αarccos(δRB +B2R δR 2 2RB ))

δRB // =Bsin(θα)

## 2 斜距差和相位差的关系

SAR影像的一个像素为一个复数：包含振幅A和相位φ $\varphi$
z=Aexp(jφ)

φ=2πλ (R fw +R bw )+φ scatt

But something very useful emerges when two otherwise useless SLC SAR images are combined, as explained below.

Interferometric SAR (InSAR) exploits the phase differences of at least two complex-valued SAR images acquired from different orbit positions and/or at different times.

The interferogram is calculated by co-registering two SAR imagesμ 1  $\mu_1$μ 2  $\mu_2$ and differencing the corresponding phase values on a pixel-by-pixel basis, i.e., by a pixel-by-pixel complex multiplication of the master image μ 1  $\mu_1$ with the complex conjugated slave image μ 2  $\mu_2$ . Due to baseline B $B$ , the distances from the antennas to the scene differ by δR $\delta R$, which results in a phase difference δφ $\delta \varphi$ in the interferogram:

s=μ 1 μ  1 =μ 1 exp(jδφ)

δφ=φ 1 φ 2

Under the pre-condition φ scatt,1 =φ scatt,2  $\varphi_{scatt,1} = \varphi_{scatt,2}$ and the utilization of the same emitting horn for both images leading to R fw,1 =R fw,2  $R_{fw,1} =R_{fw,2}$ , which is the case for single-pass measurements, the interferometric phase is just related to the range diﬀerence of the two antennas:
δφ=2πλ δR

On the other hand, for repeat-pass measurements,
δφ=4πλ δR