谱聚类算法入门教程(三)—— 求f^TLf的最小值


在上一篇博客中,我们知道目标函数变为 a r g min ⁡ f ∈ R 6 f T L f arg \min \limits_{f \in \R^6} f^TLf argfR6minfTLf,即找到一个 f f f,使得 f T L f f^TLf fTLf 取得最小值

这篇博客将通过求导的方式取得目标函数的最小值。

1. 求 f T L f f^TLf fTLf的导数

目标函数的未知量为 f f f,那么 f T L f f^TLf fTLf 的导数可以表示为 ∂ ∂ f f T L f \displaystyle \frac{\partial}{\partial f} f^TLf ffTLf

这里为了方便证明,使用一个二维向量作为例子,推广到更高维空间也是一样的,即假设 f T = [ f 1    f 2 ] f^T = [f_1 \space \space f_2] fT=[f1  f2] L = [ a 11 a 12 a 21 a 22 ] L = \left[\begin{matrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{matrix}\right] L=[a11a21a12a22]

故:

∂ ∂ f f T L f = ∂ ∂ f [ f 1 f 2 ] [ a 11 a 12 a 21 a 22 ] [ f 1 f 2 ] = ∂ ∂ f [ f 1 f 2 ] [ a 11 f 1 + a 12 f 2 a 21 f 1 + a 22 f 2 ] = ∂ ∂ f a 11 f 1 2 + a 12 f 1 f 2 + a 21 f 1 f 2 + a 22 f 2 2 = [ ∂ ∂ f 1 a 11 f 1 2 + a 12 f 1 f 2 + a 21 f 1 f 2 + a 22 f 2 2 ∂ ∂ f 2 a 11 f 1 2 + a 12 f 1 f 2 + a 21 f 1 f 2 + a 22 f 2 2 ] = [ 2 a 11 f 1 + a 12 f 2 + a 21 f 2 a 12 f 1 + a 21 f 1 + 2 a 22 f 2 ] = [ [ a 11 a 12 a 21 a 22 ] + [ a 11 a 21 a 12 a 22 ] ] [ f 1 f 2 ] = ( L + L T ) f \begin{aligned}\displaystyle \frac{\partial}{\partial f} f^TLf &= \displaystyle \frac{\partial}{\partial f} \left[ \begin{matrix} f_1 & f_2 \end{matrix}\right] \left[\begin{matrix}a_{11} & a_{12} \\ a_{21} & a_{22}\end{matrix}\right] \left[\begin{matrix}f_{1}\\ f_{2}\end{matrix}\right] \\ & = \displaystyle \frac{\partial}{\partial f} \left[ \begin{matrix} f_1 & f_2 \end{matrix}\right] \left[\begin{matrix}a_{11}f_1 + a_{12}f_2 \\ a_{21}f_1 + a_{22}f_2 \end{matrix}\right] \\ & = \displaystyle \frac{\partial}{\partial f} a_{11}f_1^2 + a_{12}f_1f_2 + a_{21}f_1f_2 + a_{22}f_2^2 \\ & = \displaystyle \left[ \begin{matrix}\displaystyle \frac{\partial}{\partial f_1} a_{11}f_1^2 + a_{12}f_1f_2 + a_{21}f_1f_2 + a_{22}f_2^2 \\ \displaystyle \frac{\partial}{\partial f_2} a_{11}f_1^2 + a_{12}f_1f_2 + a_{21}f_1f_2 + a_{22}f_2^2\end{matrix} \right] \\ & = \left[ \begin{matrix}2a_{11}f_1 + a_{12}f_2 + a_{21}f_2 \\ a_{12}f_1 + a_{21}f_1 + 2a_{22}f_2 \end{matrix} \right] \\ & = \displaystyle \left[ \left[ \begin{matrix}a_{11} & a_{12} \\ a_{21} & a{22}\end{matrix}\right] + \left[ \begin{matrix}a_{11} & a_{21} \\ a_{12} & a{22}\end{matrix}\right]\right]\left[ \begin{matrix}f_{1} \\ f_{2} \end{matrix}\right] \\ & = \displaystyle (L+L^T)f \end{aligned} ffTLf=f[f1f2][a11a21a12a22][f1f2]=f[f1f2][a11f1+a12f2a21f1+a22f2]=fa11f12+a12f1f2+a21f1f2+a22f22=f1a11f12+a12f1f2+a21f1f2+a22f22f2a11f12+a12f1f2+a21f1f2+a22f22=[2a11f1+a12f2+a21f2a12f1+a21f1+2a22f2]=[[a11a21a12a22]+[a11a12a21a22]][f1f2]=(L+LT)f

根据拉普拉斯矩阵的定义我们可以知道拉普拉斯矩阵是对称矩阵1,因此 L T = L L^T = L LT=L,原式可以转化为:

∂ ∂ f f T L f = ( L + L T ) f = 2 L f \begin{aligned}\displaystyle \frac{\partial}{\partial f} f^TLf &= (L+L^T)f \\ &=2Lf\end{aligned} ffTLf=(L+LT)f=2Lf

2. f f f 的定义

在求解目标函数之前,我们回忆一下我们一开始给出的 f f f 的定义:

f i = { 1 ∣ A ∣ k i ∈ A       0 k i ∈ A ˉ f_i = \begin{cases} \sqrt{\displaystyle \frac{1}{|A|}} & k_i \in A \\ \space \space \space \space \space 0 & k_i \in \bar{A} \end{cases} fi=A1      0kiAkiAˉ

该定义满足: f T f = I f^Tf = I fTf=I I I I 为单位矩阵

  • Frobenius norm(Frobenius 范数)

Frobenius 范数,简称F-范数,是一种矩阵范数,记为 ∣ ∣ ⋅ ∣ ∣ F ||·||_F F。矩阵 A 的Frobenius范数定义为矩阵A各项元素的绝对值平方的总和,即

∣ ∣ A ∣ ∣ F = ∑ i = 1 m ∑ j = 1 n ∣ a i , j ∣ 2 = t r ( A T A ) ||A||_F = \displaystyle \sqrt{\sum_{i=1}^m\sum_{j=1}^n|a_{i,j}|^2} = \sqrt{tr(A^TA)} AF=i=1mj=1nai,j2 =tr(ATA)

3. 求解 a r g min ⁡ f ∈ R 6 f T L f arg \min \limits_{f \in \R^6} f^TLf argfR6minfTLf

上面关于 f f f 的定义中,可以知道 f T f = I f^Tf = I fTf=I,故 f T f − I = 0 f^Tf - I = 0 fTfI=0

f T L f f^TLf fTLf 的导数( λ \lambda λ为某个常数):

∂ ∂ f f T L f = ∂ ∂ f f T L f − λ ( f T f − I ) = ∂ ∂ f [ f T L f − λ f T f + λ ] \begin{aligned}\displaystyle \frac{\partial}{\partial f} f^TLf &= \displaystyle \frac{\partial}{\partial f} f^TLf - \lambda(f^Tf-I) \\ &= \displaystyle \frac{\partial}{\partial f}[ f^TLf-\lambda f^Tf + \lambda]\end{aligned} ffTLf=ffTLfλ(fTfI)=f[fTLfλfTf+λ]

由上面第一点的关于导数的讨论中,可以知道:$ \frac{\partial}{\partial f} f^TLf = 2Lf$

故上面的导数可以转化为:

∂ ∂ f f T L f = 2 L f − λ 2 f \begin{aligned}\displaystyle \frac{\partial}{\partial f} f^TLf = 2Lf-\lambda 2f \end{aligned} ffTLf=2Lfλ2f

2 L f = λ 2 f 2Lf=\lambda 2f 2Lf=λ2f,即 L f = λ f Lf = \lambda f Lf=λf,则导数为0,此时取到极点

根据特征值和特征向量的定义:若 L x = λ x Lx =\lambda x Lx=λx,则 x x x 为矩阵 L L L的特征向量, λ \lambda λ 为特征值

即当 f f f L L L的特征向量时取得极值。

我们再对导数求导,可得: ∂ 2 ∂ f 2 f T L f = 2 L \displaystyle \frac{\partial^2}{\partial f^2} f^TLf = 2L f22fTLf=2L,因为 L L L 为拉普拉斯矩阵,根据拉普拉斯矩阵的定义, L L L 为半正定矩阵,故导数的导数大于0,导数递增,极值即为最小值。

所以, a r g min ⁡ f ∈ R 6 f T L f arg \min \limits_{f \in \R^6} f^TLf argfR6minfTLf f f f 取最小特征值对应的特征向量时取得最小值。

不过,当 f f f 取得特征向量的时候,未必满足一开始 f f f 的定义(最重要的是未必满足约束条件 f T f = I f^Tf = I fTf=I,因为这是推导出最小值的关键),因此通常对 L L L的特征向量进行k-means聚类分析,生成一个最接近特征向量的向量。

以我们在教程(二)的简单的例子为例,一个计算特征向量的在线网站

取特征值 5 为例(这里最小的特征值6是最小特征值,不过从特征向量可以看出特征值5的分类更明显),从这6个数(0.3587, 0.3149, 0.3145, -0.4513, -0.5149, -0.4521)的分布可以将其分为两类,前三个为一类,后三个为一类,这符合我们一开始从图上看出来的结果,此时:

f = [ 1 3 1 3 1 3 0 0 0 ] f = \left[ \begin{matrix} \displaystyle \frac{1}{\sqrt{3}} \\ \displaystyle \frac{1}{\sqrt{3}} \\ \displaystyle \frac{1}{\sqrt{3}} \\ 0 \\ 0 \\ 0 \end{matrix}\right] f=3 13 13 1000

5. 拓展到 k > 2

前面我们的假设一直是 k=2,如果需要不仅分为两类 A A A A ˉ \bar{A} Aˉ,而是多个聚类,我们可以取 k 个特征向量,然后对这 k 个特征向量组成的矩阵进行k-means聚类分析,原理和上面是类似的。

6. 正则拉普拉斯矩阵

在之前的讨论中,一直使用的是普通的拉普拉斯矩阵,实际情况中,经常使用的是正则拉普拉斯矩阵,可以提高数据之间的可比性。

正则拉普拉斯矩阵的定义:

L s y s = D − 1 / 2 L D − 1 / 2 = I − D − 1 / 2 W D − 1 / 2 L_{sys} = D^{-1/2}LD^{-1/2} = I - D^{-1/2}WD^{-1/2} Lsys=D1/2LD1/2=ID1/2WD1/2

L r w = D − 1 L = I − D − 1 W L_{rw} = D^{-1}L = I - D^{-1}W Lrw=D1L=ID1W

L s y s L_{sys} Lsys L r w L_{rw} Lrw都是拉普拉斯矩阵的一种。

正则拉普拉斯矩阵的性质:

(λ,u)是 L r w L_{rw} Lrw的特征值和特征向量,当且仅当(λ, D 1 / 2 u D^{1/2}u D1/2u)是 L s y m L_{sym} Lsym的特征值和特征向量

7. RatioCut 和 Ncut

在上面的讨论中,用于衡量聚类分析优异的函数为:

R = ∑ i , j = 1 n w i , j ( f i − f j ) 2 R = \displaystyle \sum_{i,j = 1}^{n}w_{i,j}(f_i-f_j)^2 R=i,j=1nwi,j(fifj)2

在实际操作中,为了避免聚类效果不佳,常使用两种方法来聚类分析:RatioCut和Ncut,具体可以参考博客:https://www.cnblogs.com/pinard/p/6221564.html,基本原理和上面的证明过程是一致的,这里就不赘述了,啦啦啦。


  1. 拉普拉斯矩阵 ↩︎

  • 3
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值