复变函数:第四章——级数

原文链接:http://littlefish33.cn/CV/Series

级数相关内容

  1. 无穷级数:无穷项之和,近似于部分和序列的极限
  2. n=1an=limnnk=1ak=limnSn ∑ n = 1 ∞ a n = lim n → ∞ ∑ k = 1 n a k = lim n → ∞ S n
  3. n=1an ∑ n = 1 ∞ a n 收敛 limnan=0 ⇒ lim n → ∞ a n = 0 ​ (反之不一定成立)
  4. n=1an,n=1bn ∑ n = 1 ∞ a n , ∑ n = 1 ∞ b n 收敛, n=1(an+bn)=n=1an+n=1bn ⇒ ∑ n = 1 ∞ ( a n + b n ) = ∑ n = 1 ∞ a n + ∑ n = 1 ∞ b n 收敛(反之不一定成立)
  5. 改变级数的有限项,不会影响收敛性
  6. |an| ∑ | a n | 收敛,则称 an ∑ a n 绝对收敛
  7. |an| ∑ | a n | 发散, an ∑ a n 收敛,则称 an ∑ a n 条件收敛

复数项级数

复数序列的极限

  1. 复数序列 {an} { a n } α1=a1+ib1,α2=a2+ib2,...αn=an+ibn α 1 = a 1 + i b 1 , α 2 = a 2 + i b 2 , . . . α n = a n + i b n
  2. {an} { a n } 为一个复数序列, α=a+ib α = a + i b 为一个确定的复数,若对于任意给定的 ξ>0 ξ > 0 ,相应地存在一个正数 N=N(ξ) N = N ( ξ ) ,当 n>N n > N 时,都有 |αnα|<ξ | α n − α | < ξ 成立,则称 α α 为复数列 {αn} { α n } n n → ∞ 时的极限,记做 limnαn=α lim n → ∞ α n = α ,也被称为复数序列 {an} { a n } 收敛于 α α (唯一)
  3. 定理一:令 αn=an+ibn,α=a+ib α n = a n + i b n , α = a + i b ,则 limnαn=αlimnan=a,limnbn=b lim n → ∞ α n = α ⇔ lim n → ∞ a n = a , lim n → ∞ b n = b

复数项级数

  1. 定义3:设 {an} { a n } 为一复数列,表达式 α1+α2+α2+...+αn+... α 1 + α 2 + α 2 + . . . + α n + . . . 称为无穷级数,记做 n=1αn ∑ n = 1 ∞ α n
  2. 定义4:无穷级数 n=1αn ∑ n = 1 ∞ α n 的前几项和 Sn=α1+α2+α2+...+αn S n = α 1 + α 2 + α 2 + . . . + α n 称为级数的部分和
  3. 定义5:如果级数 n=1αn ∑ n = 1 ∞ α n 的部分和数列 {Sn} { S n } 收敛,那么级数 n=1αn ∑ n = 1 ∞ α n 收敛, limnSn=S lim n → ∞ S n = S ,称为级数的和;若数列 {Sn} { S n } 不收敛,那么级数 n=1αn ∑ n = 1 ∞ α n 称为发散
  4. 几个要注意的定义:
    1. 级数收敛 limnαn=0 lim n → ∞ α n = 0 limnnk=1αn=S lim n → ∞ ∑ k = 1 n α n = S limnSn=S lim n → ∞ S n = S 级数的部分和数列收敛
    2. 收敛时,级数的和=级数的值,都是唯一的
  5. 定理二:级数 n=1αn ∑ n = 1 ∞ α n 收敛 n=1an,n=1bn ⇔ ∑ n = 1 ∞ a n , ∑ n = 1 ∞ b n 收敛
  6. 定义6:复数项级数的绝对收敛和条件收敛
  7. 推论:级数 n=1αn ∑ n = 1 ∞ α n 绝对收敛 n=1an,n=1bn ∑ n = 1 ∞ a n , ∑ n = 1 ∞ b n 绝对收敛
  8. αn,βn ∑ α n , ∑ β n 收敛 (αn+βn) ∑ ( α n + β n ) 收敛

幂级数

复变函数项级数的概念

  1. 定义1:设 {fn(z)}(n=1,2,...) { f n ( z ) } ( n = 1 , 2 , . . . ) 为一复变函数序列,其中各项在区域 D D 中有定义,则表达式f1(z)+f2(z)+...+fn(z)+...称为复变函数项级数,记做 n=1fn(z) ∑ n = 1 ∞ f n ( z )
  2. 定义2: n=1fn(z) ∑ n = 1 ∞ f n ( z ) 的最前面 n n 项的和Sn(z)=f1(z)+f2(z)+...+fn(z)称为此级数的部分和
  3. 定义3:若对于 D D 内某一点Z0,极限 limnSn(z0)=S(z0) lim n → ∞ S n ( z 0 ) = S ( z 0 ) 存在,那么称函数项级数 n=1fn(z) ∑ n = 1 ∞ f n ( z ) 在点 z0 z 0 收敛,而 S(z0) S ( z 0 ) 称为数项级数 n=1fn(z0) ∑ n = 1 ∞ f n ( z 0 ) 的和
  4. 定义4:如果复变函数项级数 n=1fn(z) ∑ n = 1 ∞ f n ( z ) D D 内处处收敛,则有limnSn(z)=S(z),zD S(z) S ( z ) 称为函数项级数 n=1fn(z) ∑ n = 1 ∞ f n ( z ) 的和函数

幂级数的概念

  1. 定义4:形如 n=0Cn(zz0)n=C0+C1(zz0)+C2(zz0)2+...+Cn(zz0)n+... ∑ n = 0 ∞ C n ( z − z 0 ) n = C 0 + C 1 ( z − z 0 ) + C 2 ( z − z 0 ) 2 + . . . + C n ( z − z 0 ) n + . . . n=0Cnzn=C0+C1z+C2z2+...+Cnzn+... ∑ n = 0 ∞ C n z n = C 0 + C 1 z + C 2 z 2 + . . . + C n z n + . . . 的函数项级数称为幂级数
  2. 定理一(Abel 阿贝尔定理):如果幂级数 n=0Cnzn ∑ n = 0 ∞ C n z n z=z00 z = z 0 ≠ 0 收敛,则对于满足 |z|<|z0| | z | < | z 0 | z z ,级数绝对收敛;如果幂级数n=0Cnzn z=z00 z = z 0 ≠ 0 发散,则对于满足 |z|<|z0| | z | < | z 0 | z z ,级数必发散

幂级数的收敛半径和收敛圆

  1. 如果幂级数n=0Cnzn不仅在 z=0 z = 0 收敛,而不是在整个复平面上都收敛,则可设当 z=α z = α 时,级数收敛;当 z=β z = β 时,级数发散,则有 |α|<|β| | α | < | β |

  2. 如果幂级数 n=0Cnzn ∑ n = 0 ∞ C n z n 不是仅在 z=0 z = 0 处收敛,也不是在整个复平面上收敛,则必有一个整数 R R ,当|z|<R时绝对收敛;当 |z|>R | z | > R 时发散;当 |z|=R | z | = R 时不确定; R R 称为幂级数n=0Cnzn的收敛半径, |z|=R | z | = R 称为收敛圆

  3. 收敛半径的求法:

    根值法:若 limn|Cn|n=λ0 l i m n → ∞ | C n | n = λ ≠ 0 ,则 R=1λ R = 1 λ

    比值判定法:若 limnCn+1Cn=λ l i m n → ∞ C n + 1 C n = λ ,则 R=1λ R = 1 λ

  4. 收敛域为开区域,不包括边界情况

eg:

+n=4|n|(z1)n ∑ n = − ∞ + ∞ 4 − | n | ( z − 1 ) n 的收敛域

对于正幂部分: +n=4n(z1)n ∑ n = − ∞ + ∞ 4 − n ( z − 1 ) n ,由根值法: |z14|<1|z1|<4 | z − 1 4 | < 1 → | z − 1 | < 4

对于负幂部分: +n=14(z1),[14(z1)]0 ∑ n = − ∞ + ∞ 1 4 ( z − 1 ) , [ 1 4 ( z − 1 ) ] → 0

                                                    14|z1|<1|z1|>14                                                                                                         1 4 | z − 1 | < 1 ⇒ | z − 1 | > 1 4

幂级数的运算和性质

  1. f(z)=n=0anzn,|z|<r1;g(z)=n=0bnzn,|z|<r2 f ( z ) = ∑ n = 0 ∞ a n ⋅ z n , | z | < r 1 ; g ( z ) = ∑ n = 0 ∞ b n ⋅ z n , | z | < r 2

    f(z)±g(z)=n=0(an±bn)zn,|z|<R,R=min{r1,r2} f ( z ) ± g ( z ) = ∑ n = 0 ∞ ( a n ± b n ) ⋅ z n , | z | < R , R = m i n { r 1 , r 2 }

    f(z)g(z)=n=0(anb0+an1b1+an2b2+...+a0bn)zn,|z|<R,R=min{r1,r2} f ( z ) ⋅ g ( z ) = ∑ n = 0 ∞ ( a n ⋅ b 0 + a n − 1 ⋅ b 1 + a n − 2 ⋅ b 2 + . . . + a 0 ⋅ b n ) ⋅ z n , | z | < R , R = m i n { r 1 , r 2 }

  2. 定理四:设 n=0Cn(zz0)n ∑ n = 0 ∞ C n ( z − z 0 ) n 收敛半径为 R R ,则

    1. 和函数f(z)=n=0Cn(zz0)n是收敛圆: |zz0|<R | z − z 0 | < R 内的解析函数

    2. 在收敛圆: |zz0|<R | z − z 0 | < R 内, f(z)=n=1nCn(zz0)n1 f ′ ( z ) = ∑ n = 1 ∞ n ⋅ C n ( z − z 0 ) n − 1
    3. 在收敛圆: |zz0|<R | z − z 0 | < R 内, Cf(z)dz=n=0CnC(zz0)ndz ∫ C f ( z ) d z = ∑ n = 0 ∞ C n ∫ C ( z − z 0 ) n d z ,C是收敛圆内的任意一条有向光滑曲线
    • 解析函数:在区域内处处可微分的函数,即没有奇点,没有导数无穷大的点

    • 和函数 = 导数的和

    • 泰勒级数

      柯西积分公式

      1. 设幂级数 n=0Cn(zz0)n ∑ n = 0 ∞ C n ( z − z 0 ) n 的收敛半径为 R R ,它的和函数f(z)=n=0Cn(zz0)n是收敛圆: |zz0|<R | z − z 0 | < R 内的解析函数;

        反之,若 f(z) f ( z ) 是圆内 |zz0|<R | z − z 0 | < R 内的解析函数,则: f(z) f ( z ) 能否表示为幂级数

      2. 柯西积分公式:设 f(z) f ( z ) 在区域 D D 内解析,z0 D D 上一点,C D D 内包围z0的任意一条正向简单闭围线,它的内部完全包含 D D ,则:f(z)=12πiCf(z)zz0dz

      3. 推广:设 f f 在一条正向的简单闭围线C及其内部的所有点上解析,若 z0 z 0 C C 内的任意一点,则fn(z)=n!2πiCf(z)(zz0)n+1dz

      解析函数的泰勒展开式

      1. 定理:若 f(z) f ( z ) 在区域 D D 内解析,z0 D D 内一点,d z0 z 0 D D 的边界的各点的最短距离,则f(z)=n=0Cn(zz0)n,|zz0|<d,其中, Cn=fn(z0)n! C n = f n ( z 0 ) n ! (唯一的,给出了圆域内解析函数的一个解析表达式)
      2. 已知 n=0Cnzn ∑ n = 0 ∞ C n z n 收敛半径 R R ,则在|z|=R上必有奇点
      3. 解法:
        • 使用常用的展开式
        • 判断是否为某个数的导数或积分
        • 公式

      常用的展开式

      11z=+n=0zn 1 1 − z = ∑ n = 0 + ∞ z n

      11+z=11(z)=+n=0(1)nzn 1 1 + z = 1 1 − ( − z ) = ∑ n = 0 + ∞ ( − 1 ) n z n

      sinz=+n=0(1)nz2n+1(2n+1)n=zz33!+z55!+...+(1)nz2n+1(2n+1)!+... s i n z = ∑ n = 0 + ∞ ( − 1 ) n z 2 n + 1 ( 2 n + 1 ) n = z − z 3 3 ! + z 5 5 ! + . . . + ( − 1 ) n z 2 n + 1 ( 2 n + 1 ) ! + . . .

      cosz=+n=0(1)nz2n(2n)n=1z22!+z44!+...+(1)nz2n(2n)!+... c o s z = ∑ n = 0 + ∞ ( − 1 ) n z 2 n ( 2 n ) n = 1 − z 2 2 ! + z 4 4 ! + . . . + ( − 1 ) n z 2 n ( 2 n ) ! + . . .

      (sinz)n=sin(z+nπ2) ( s i n z ) n = s i n ( z + n ⋅ π 2 )

      (sinz)n|z=0=sin(nπ2)={(1)k0n=2k+1n=2k ( s i n z ) n | z = 0 = s i n ( n π 2 ) = { ( − 1 ) k n = 2 k + 1 0 n = 2 k

      eg:

      f(z)=1(1+z)2 f ( z ) = 1 ( 1 + z ) 2 的Tayer级数

      11+z=n=0(1)nzn ∵ 1 1 + z = ∑ n = 0 ∞ ( − 1 ) n ⋅ z n

      1(1+z)2=(11+z)=n=0[(1)n(zn)]=n=0(1)n1nzn1 ∴ 1 ( 1 + z ) 2 = − ( 1 1 + z ) ′ = − ∑ n = 0 ∞ [ ( − 1 ) n ⋅ ( z n ) ] ′ = − ∑ n = 0 ∞ ( − 1 ) n − 1 ⋅ n ⋅ z n − 1

      eg:

      ln(1+z) l n ( 1 + z ) z=0 z = 0 处的泰勒展开式

      dln(1+z)dz=11+z=n=0(1)nzn d l n ( 1 + z ) d z = 1 1 + z = ∑ n = 0 ∞ ( − 1 ) n ⋅ z n

      ln(1+z)=z0dln(1+z)dzdz l n ( 1 + z ) = ∫ 0 z d l n ( 1 + z ) d z d z

                     =n011+zdz                               = ∫ 0 n 1 1 + z d z

                     =n0[n=0(1)nzn]d                               = ∫ 0 n [ ∑ n = 0 ∞ ( − 1 ) n z n ] d

                     =n=0(1)nn0zndz                               = ∑ n = 0 ∞ ( − 1 ) n ⋅ ∫ 0 n z n d z

                     =n=0(1)nzn+1n+1                               = ∑ n = 0 ∞ ( − 1 ) n ⋅ z n + 1 n + 1

      函数在一点解析的等价定义

            f(z)             f ( z ) z0 z 0 处解析

      f(z) ⇔ f ( z ) 在点 z0 z 0 的某邻域 U:|zz0|<R U : | z − z 0 | < R 内解析

      f(z) ⇔ f ( z ) |zz0|<R | z − z 0 | < R 内可展开为关于 zz0 z − z 0 的幂级数 f(z)=n=0Cn(zz0)n,|zz0|<R f ( z ) = ∑ n = 0 ∞ C n ( z − z 0 ) n , | z − z 0 | < R

      洛朗级数

      问题的提出

      1. f(z)=1z2 f ( z ) = 1 z − 2 展开成 z1 z − 1 的幂级数

      1z2=11(z1),|z1|<1 1 z − 2 = 1 1 − ( z − 1 ) , | z − 1 | < 1 ,故 1z2=+n=0(z1)n 1 z − 2 = − ∑ n = 0 + ∞ ( z − 1 ) n

      1. 再看 f(z)=1(z1)(z2) f ( z ) = 1 ( z − 1 ) ( z − 2 ) 不能展开成 z1 z − 1 的幂级数,因为 f(z) f ( z ) z1 z − 1 处不解析

        但是 f(z) f ( z ) 在除了 z=1 z = 1 的环形域上解析,因此有没有更弱的表示法?

        f(z)=1z21z1=n=0(z1)n(z1)1,(0<|z1|<1) f ( z ) = 1 z − 2 − 1 z − 1 = ∑ n = 0 ∞ ( z − 1 ) n − ( z − 1 ) − 1 , ( 0 < | z − 1 | < 1 )

        我们称其为洛朗级数,负整数幂 + 正整数幂

      洛朗级数

      1. w=(zz0)1 w = ( z − z 0 ) − 1 ,则 +n=1βn(zz0)n=β1w+β2w2+...+βnwn+... ∑ n = 1 + ∞ β − n ( z − z 0 ) − n = β − 1 ⋅ w + β − 2 ⋅ w 2 + . . . + β − n ⋅ w n + . . . 关于 w w 的幂级数,设这个幂级数的收敛半径为R

        0<R<+ 0 < R < + ∞ ,则 |w|<R | w | < R 内该级数绝对收敛;在 |w|>R | w | > R 发散

      2. 更一般的,考虑级数, f(z)=+n=βn(zz0)n=+n=0βn(zz0)n+1n=βn(zz0)n f ( z ) = ∑ n = − ∞ + ∞ β n ( z − z 0 ) n = ∑ n = 0 + ∞ β n ( z − z 0 ) n + ∑ n = − ∞ − 1 β n ( z − z 0 ) n

      3. 收敛为两个都收敛,发散为任意一个发散

      洛朗展开式

      定理:设 f(z) f ( z ) 在圆环 D D R1<|zz0|<R2内解析,则在 D D f(z)=n=+an(zz0)n

      an=12πiγf(δ)(δz0)n+1dδ a n = 1 2 π i ∮ γ f ( δ ) ( δ − z 0 ) n + 1 d δ ,其中 γ γ 为圆周 |zz0|<ρ,(R1<ρ<R2) | z − z 0 | < ρ , ( R 1 < ρ < R 2 ) (也可以是任意闭区域)

  • 10
    点赞
  • 61
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值