(《机器学习》完整版系列)第12章 计算学习理论——12.6 Rademacher复杂度(样本集:分布、i.i.d.采样、样本数)

假设空间 H \mathcal{H} H关于 D D D的经验Rademacher复杂度反映了假设空间 H \mathcal{H} H的能力。

Rademacher复杂度

VC维是一个与分布无关的视角,而Rademacher复杂度则是与分布有关的。

现在将二分类的标记空间设为 { − 1 , + 1 } \{-1,+1\} {1,+1},真实标记 y y y与预测标记 h ( x ) h(\boldsymbol{x}) h(x)的各种组合为表12.2 中的第1、2列。

观察第3列和第4列,有
I ( h ( x ) ≠ y ) = 1 − y ⋅ h ( x ) 2 \begin{align} \mathbb{I} (h(\boldsymbol{x})\neq y)=\frac{1-y\cdot h(\boldsymbol{x})}{2} \tag{12.24} \end{align} I(h(x)=y)=21yh(x)(12.24)
【西瓜书式(12.36)】的推导过程中用到式(12.24)。 【西瓜书式(12.36)】表明:要使经验误差最小化,就应使式(12.25)最大化。
1 m ∑ i = 1 m y i ⋅ h ( x i ) \begin{align} \frac{1}{m}\sum_{i=1}^my_i\cdot h(\boldsymbol{x}_i) \tag{12.25} \end{align} m1i=1myih(xi)(12.25)
其中 ( y 1 , y 2 , ⋯   , y m ) (y_1, y_2,\cdots,y_m) (y1,y2,,ym)为一组确定的值。

现在设有一组骰子 ( σ 1 , σ 2 , ⋯   , σ m ) ({\sigma}_1, {\sigma}_2,\cdots,{\sigma}_m) (σ1,σ2,,σm),每个骰子只有两个面:正面(标记+1)和反面(标记-1),且投掷结果是每面出现的概率相等(均为1/2),让上帝掷这组骰子,每掷一次就有一组确定的值,相当于选出了一组 ( y 1 , y 2 , ⋯   , y m ) (y_1,y_2,\cdots,y_m) (y1,y2,,ym),形成了样例集 D = { ( x i , y i ) } i = 1 m D=\{(\boldsymbol{x}_i,y_i)\}_{i=1}^m D={(xi,yi)}i=1m,就有一个式(12.25),将这些式子统一表达,即
1 m ∑ i = 1 m σ i ⋅ h ( x i ) \begin{align} \frac{1}{m}\sum_{i=1}^m{\sigma}_i\cdot h(\boldsymbol{x}_i) \tag{12.26} \end{align} m1i=1mσih(xi)(12.26)

考察式(12.26),由于 D D D已知,故 x i \boldsymbol{x}_i xi已知,一旦上帝掷好了 σ = ( σ 1 , σ 2 , ⋯   , σ m ) {\sigma}=({\sigma}_1, {\sigma}_2,\cdots,{\sigma}_m) σ=(σ1,σ2,,σm)后,式(12.26)中的“变量”为 h h h h h h每取一个 H \mathcal{H} H中的假设,式(12.26)就有一个值。

h σ h^{\sigma} hσ使得 h σ ( x i ) = σ i , ∀ i ∈ { 1 , 2 , ⋯   , m } h^{\sigma}(\boldsymbol{x}_i)={\sigma}_i,\forall i \in \{1,2,\cdots,m\} hσ(xi)=σi,i{1,2,,m},则 σ i h σ ( x i ) = σ i 2 = 1 {\sigma}_ih^{\sigma}(\boldsymbol{x}_i)={\sigma}_i^2=1 σihσ(xi)=σi2=1,而对 ∀ h \forall h h有: σ i h ( x i ) ⩽ ( + 1 ) ( + 1 ) = 1 {\sigma}_ih(\boldsymbol{x}_i)\leqslant (+1)(+1)=1 σih(xi)(+1)(+1)=1,代入式(12.26)有
1 m ∑ i = 1 m σ i ⋅ h ( x i ) ⩽ 1 \begin{align} \frac{1}{m}\sum_{i=1}^m{\sigma}_i\cdot h(\boldsymbol{x}_i)\leqslant 1 \tag{12.27} \end{align} m1i=1mσih(xi)1(12.27)
h = h σ h=h^{\sigma} h=hσ时,取等号。 即
h σ = arg ⁡ max ⁡ h ∈ H 1 m ∑ i = 1 m σ i ⋅ h ( x i ) \begin{align} h^{\sigma}=\mathop{\arg\max}\limits_{h \in \mathcal{H}} \frac{1}{m}\sum_{i=1}^m{\sigma}_i\cdot h(\boldsymbol{x}_i) \tag{12.28} \end{align} hσ=hHargmaxm1i=1mσih(xi)(12.28)

然而,上述理想的 h σ h^{\sigma} hσ不一定在 H \mathcal{H} H中,因此,退而求其次,考虑
sup ⁡ h ∈ H 1 m ∑ i = 1 m σ i ⋅ h ( x i ) \begin{align} \sup_{h \in \mathcal{H} } \frac{1}{m}\sum_{i=1}^m{\sigma}_i\cdot h(\boldsymbol{x}_i) \tag{12.29} \end{align} hHsupm1i=1mσih(xi)(12.29)
这时,一定有 H \mathcal{H} H中的 h h h使其达到上确界,当然, h h h是与 σ = ( σ 1 , σ 2 , ⋯   , σ m ) {\sigma}=({\sigma}_1, {\sigma}_2,\cdots,{\sigma}_m) σ=(σ1,σ2,,σm)相关的,表达式为
h σ = arg ⁡ sup ⁡ h ∈ H 1 m ∑ i = 1 m σ i ⋅ h ( x i ) \begin{align} h_{{\sigma}}=\arg\sup_{h \in \mathcal{H} } \frac{1}{m}\sum_{i=1}^m{\sigma}_i\cdot h(\boldsymbol{x}_i) \tag{12.30} \end{align} hσ=arghHsupm1i=1mσih(xi)(12.30)
若能消去式(12.29)中的随机变量 σ i {\sigma}_i σi,则能得到一个定值,消去随机变量的办法通常是取数学期望,即
E σ [ sup ⁡ h ∈ H 1 m ∑ i = 1 m σ i ⋅ h ( x i ) ] \begin{align} \mathop{\mathbb{E} }\limits_{\sigma} [\sup_{h \in \mathcal{H} } \frac{1}{m}\sum_{i=1}^m{\sigma}_i\cdot h(\boldsymbol{x}_i)] \tag{12.31} \end{align} σE[hHsupm1i=1mσih(xi)](12.31)
其中, σ = ( σ 1 , σ 2 , ⋯   , σ m ) {\sigma}=({\sigma}_1, {\sigma}_2,\cdots,{\sigma}_m) σ=(σ1,σ2,,σm)

式(12.28)表明:若对任意的 σ {\sigma} σ,都有对应的 h σ ∈ H h^{\sigma}\in \mathcal{H} hσH,式(12.31)的值最大(为1),此时 H \mathcal{H} H能力最强( H \mathcal{H} H具有“打散”能力)。 又当 H \mathcal{H} H能力最弱时,如,仅含一个元素 h h h(只能删除表12.1 中的一行,表12.1 参见12.5 无限假设空间),这时,式(12.31)中 h ( x i ) h(\boldsymbol{x}_i) h(xi)为“常数”,可以消除 sup ⁡ h ∈ H \sup_{h \in \mathcal{H} } suphH,即
E σ [ sup ⁡ h ∈ H 1 m ∑ i = 1 m σ i ⋅ h ( x i ) ] = E σ [ 1 m ∑ i = 1 m σ i ⋅ h ( x i ) ] = 1 m h ( x i ) ∑ i = 1 m E σ σ i = 1 m h ( x i ) ∑ i = 1 m E σ i σ i ( 由 σ i 的独立性 ) = 1 m h ( x i ) × 0 = 0 \begin{align} \mathop{\mathbb{E} }\limits_{\sigma} [\sup_{h \in \mathcal{H} } \frac{1}{m}\sum_{i=1}^m{\sigma}_i\cdot h(\boldsymbol{x}_i)] & = \mathop{\mathbb{E} }\limits_{\sigma} [ \frac{1}{m}\sum_{i=1}^m{\sigma}_i\cdot h(\boldsymbol{x}_i)]\notag \\ & =\frac{1}{m}h(\boldsymbol{x}_i)\sum_{i=1}^m\mathop{\mathbb{E} }\limits_{\sigma }{\sigma}_i \notag \\ & =\frac{1}{m}h(\boldsymbol{x}_i)\sum_{i=1}^m\mathop{\mathbb{E} }\limits_{\sigma _i}{\sigma}_i(\text{由${\sigma _i}$的独立性}) \notag \\ & =\frac{1}{m}h(\boldsymbol{x}_i)\times 0\notag \\ & =0 \tag{12.32} \end{align} σE[hHsupm1i=1mσih(xi)]=σE[m1i=1mσih(xi)]=m1h(xi)i=1mσEσi=m1h(xi)i=1mσiEσi(σi的独立性)=m1h(xi)×0=0(12.32)

即此时式(12.31)的最小值为0,故式(12.31)反映了假设空间 H \mathcal{H} H的能力,将式(12.31)称为假设空间 H \mathcal{H} H关于 D D D的经验Rademacher复杂度,将这句话融入到一个记号中:
R ^ D ( H ) = E σ [ sup ⁡ h ∈ H 1 m ∑ i = 1 m σ i ⋅ h ( x i ) ] \begin{align} \hat R_D(\mathcal{H})=\mathbb{E}_{\sigma} [\sup_{h \in \mathcal{H} } \frac{1}{m}\sum_{i=1}^m{\sigma}_i\cdot h(\boldsymbol{x}_i)] \tag{12.33} \end{align} R^D(H)=Eσ[hHsupm1i=1mσih(xi)](12.33)
其中, σ = ( σ 1 , σ 2 , ⋯   , σ m ) {\sigma}=({\sigma}_1, {\sigma}_2,\cdots,{\sigma}_m) σ=(σ1,σ2,,σm)。 观察式(12.33)的右边: x i \boldsymbol{x}_i xi ∑ i = 1 m \sum_{i=1}^m i=1m消掉、 h h h sup ⁡ h \sup_{h} suph消掉、 σ i {\sigma}_i σi E σ \mathbb{E}_{\sigma} Eσ消掉,剩下的变量为 sup ⁡ h ∈ H \sup_{h \in \mathcal{H} } suphH下的 H \mathcal{H} H,而 x i \boldsymbol{x}_i xi源于数据集 D D D作为前提。 故此有式左边的函数表达形式。

考察式(12.33),其中 D D D有三项特点:分布 D \mathcal{D} D、i.i.d.采样、样本数为 m m m。 分布 D \mathcal{D} D为样本空间的属性(设为固定的),在给定 m m m后,通过i.i.d.采样可得不同的 D 1 , D 2 , ⋯ D_1,D_2,\cdots D1,D2,,对于每一个 D i D_i Di都有一个式(12.33)的“经验” R ^ \hat R R^,“经验” R ^ \hat R R^的数学期望即为“本质”的 R R R,即关于 X \mathcal{X} X上分布 D \mathcal{D} D R m R_m Rm(Rademacher复杂度)
R m ( H ) = E D : ∼ D ∣ D ∣ = m [ R ^ D ( H ) ] \begin{align} R_m(\mathcal{H})=\mathop{\mathbb{E} }\limits_{\substack{D:\thicksim \mathcal{D} \\|D|=m}}[\hat R_D(\mathcal{H})] \tag{12.34} \end{align} Rm(H)=D:DD=mE[R^D(H)](12.34)
这又是一次“消元”。

σ i ⋅ h ( x i ) {\sigma}_i\cdot h(\boldsymbol{x}_i) σih(xi)视为随机噪声 σ i {\sigma}_i σi h ( x i ) h(\boldsymbol{x}_i) h(xi)的影响,式(12.33)又体现有在给定 m m m下随机噪声的总影响。 将该概念推广到函数空间中,式(12.33)即为【西瓜书定义12.8的(12.40)】,式(12.34)即为【西瓜书定义12.9的(12.41)】所述的Rademacher复杂度。 需要注意的是:它将离散的二值 { − 1 , + 1 } \{-1,+1\} {1,+1}函数 h h h推广到了一般的实值函数 f f f,即若 f f f离散也不一定是二值函数,即使是二值的,也不一定是 { − 1 , + 1 } \{-1,+1\} {1,+1}

本文为原创,您可以:

  • 点赞(支持博主)
  • 收藏(待以后看)
  • 转发(他考研或学习,正需要)
  • 评论(或讨论)
  • 引用(支持原创)
  • 不侵权

上一篇:12.5 无限假设空间
下一篇:12.7 定理的证明技巧(烧脑的数学,好玩的技巧)

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值