西瓜书学习笔记——第十二章:计算学习理论

本文是《西瓜书》第十二章的学习笔记,主要探讨计算学习理论的基础知识,包括泛化误差与经验误差的概念,PAC学习的原理,以及在有限和无限假设空间中的学习理论。重点讲解了在有限假设空间中的可分和不可分情况,以及通过VC维和Rademacher复杂度来衡量无限假设空间的复杂度。
摘要由CSDN通过智能技术生成

12.1 基础知识

计算机学习理论研究的是关于通过计算来进行学习的理论,即关于机器学习的理论基础,其目的是分析学习任务的困难本质,为学习算法提供理论保证。例如:在什么条件下可进行有效的学习,需要多少训练样本才能获得较好的精度等。

泛化误差与经验误差

  • 经验误差:学习器在某个特定的数据集D上的预测误差
  • 泛化误差:学习器在总体上的预测误差

而在实际问题中,我们往往不能得到总体且数据集D是通过独立同分布采样得到的,因此我们常常使用经验误差作为泛化误差的近似。
在这里插入图片描述

12.2 PAC学习

对于机器学习算法,学习器是为了寻找合适的映射规则,即如何从条件属性得到目标属性。从样本空间到标记空间存在着很多的映射,称之为概念 c c c,它决定着示例 x x x的真实标记 y y y

  • 若对任何示例 ( x , y ) (x,y) (x,y)都有 c ( x ) = y c(x)=y c(x)=y成立,则称 c c c为目标概念,所有希望学得的目标概念 c c c组成的集合为“概念类”
  • 给定学习算法,它所考虑的所有可能概念的集合称为“假设空间”,其中单个的概念称为“假设”
  • 若一个算法的假设空间包含目标概念,则称该数据集对算法是“可分的”,也称“一致的”
  • 若一个算法的假设空间不包含目标概念,则称该数据集对算法是“不可分的”,也称“不一致的”

给定一个数据集D,我们希望模型学得的假设h尽可能与目标概念一致,即以较大的概率学得误差满足预设上限的模型,这就是概率近似正确的含义。

在这里插入图片描述
这样的学习算法能以较大的概率(至少1- δ \delta

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值