bzoj2005(莫比乌斯函数+分块)

这题还是非常水的。。

首先一连线上如果有t个点,那么等差一下加起来的代价为t^2,然后只要像仪仗队那样找连线并统计连线上的点即可,找连线可以用gcd==1来找,点的个数显然是min(n/i,m/j),所以要求的是下式

\sum_{i=1}^{n}\sum_{j=1}^{m}min^2(\frac{n}{i},\frac{m}{j})[(i,j)=1]\\= \sum_{i=1}^{n}\sum_{j=1}^{m}min^2(\frac{n}{i},\frac{m}{j})\sum_{d|i,d|j}\mu(d)\\= \sum_{d}\mu(d)\sum_{i=1}^{\left \lfloor \frac{n}{d} \right \rfloor}\sum_{j=1}^{\left \lfloor \frac{m}{d} \right \rfloor}min^2(\left \lfloor \frac{n}{id} \right \rfloor,\left \lfloor \frac{m}{jd} \right \rfloor)

然后令

f(n,m)=\sum_{i=1}^{n}\sum_{j=1}^{m}min^2(\left \lfloor \frac{n}{i} \right \rfloor,\left \lfloor \frac{m}{j} \right \rfloor)

原式化为

\sum_{d=1}^{min(n,m)}\mu(d)f(\left \lfloor \frac{n}{d} \right \rfloor,\left \lfloor \frac{m}{d} \right \rfloor)

上式可以分块求,而f(n,m)也可以分块求。。然后复杂度是不超过O(n)的(预计比O(n)还要小很多),然而预处理μ(n)需要O(n),所以其实总复杂度还是O(n)

 

 

 

/**
 *          ┏┓    ┏┓
 *          ┏┛┗━━━━━━━┛┗━━━┓
 *          ┃       ┃  
 *          ┃   ━    ┃
 *          ┃ >   < ┃
 *          ┃       ┃
 *          ┃... ⌒ ...  ┃
 *          ┃              ┃
 *          ┗━┓          ┏━┛
 *          ┃          ┃ Code is far away from bug with the animal protecting          
 *          ┃          ┃   神兽保佑,代码无bug
 *          ┃          ┃           
 *          ┃          ┃        
 *          ┃          ┃
 *          ┃          ┃           
 *          ┃          ┗━━━┓
 *          ┃              ┣┓
 *          ┃              ┏┛
 *          ┗┓┓┏━━━━━━━━┳┓┏┛
 *           ┃┫┫       ┃┫┫
 *           ┗┻┛       ┗┻┛
 */
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
#include<queue>
#include<cmath>
#include<map>
#include<stack>
#include<set>
#include<bitset>
#define inc(i,l,r) for(int i=l;i<=r;i++)
#define dec(i,l,r) for(int i=l;i>=r;i--)
#define link(x) for(edge *j=h[x];j;j=j->next)
#define mem(a) memset(a,0,sizeof(a))
#define ll long long
#define eps 1e-8
#define succ(x) (1LL<<(x))
#define lowbit(x) (x&(-x))
#define sqr(x) ((x)*(x))
#define mid ((x+y)/2) 
#define NM 100005
#define nm 10005
#define N 1000005
#define M(x,y) x=max(x,y)
const double pi=acos(-1);
const ll inf=1e8+9;
using namespace std;
ll read(){
    ll x=0,f=1;char ch=getchar();
    while(!isdigit(ch)){if(ch=='-')f=-1;ch=getchar();}
    while(isdigit(ch))x=x*10+ch-'0',ch=getchar();
    return f*x;
}
    
  
  
  
int n,m,prime[NM],tot,mu[NM],a[NM];
bool v[NM];
ll ans;

void init(){
    a[1]=mu[1]=1;
    inc(i,2,n){
	if(!v[i])prime[++tot]=i,mu[i]=-1;
	inc(j,1,tot){
	    if(i*prime[j]>n)break;
	    v[i*prime[j]]++;
	    if(i%prime[j]==0)break;
	    mu[i*prime[j]]=-mu[i];
	}
	a[i]=a[i-1]+mu[i];
    }
}

ll solve(int n,int m){
    ll s=0;
    for(int i=1,j;i<=n;i=j+1){
	j=n/(n/i);ll t=n/i;t=sqr(t);
	s+=t*(m/(n/i))*(j-i+1);
    }
    for(int i=1,j;i<=m;i=j+1){
	j=m/(m/i);ll t=m/i;t=sqr(t);
	s+=t*(n/(m/i+1))*(j-i+1);
    }
    return s;
}



int main(){
    n=read();m=read();if(n>m)swap(n,m);
    init();
    for(int i=1,j;i<=n;i=j+1){
	j=min(n/(n/i),m/(m/i));
	ans+=(a[j]-a[i-1])*solve(n/i,m/i);
    }
    return 0*printf("%lld\n",ans);
}

 

 

 

 

2005: [Noi2010]能量采集

Time Limit: 10 Sec  Memory Limit: 512 MB
Submit: 4945  Solved: 3018
[Submit][Status][Discuss]

Description

栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量。在这些植物采集能量后,

栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起。 栋栋的植物种得非常整齐,一共有n列,每列

有m棵,植物的横竖间距都一样,因此对于每一棵植物,栋栋可以用一个坐标(x, y)来表示,其中x的范围是1至n,

表示是在第x列,y的范围是1至m,表示是在第x列的第y棵。 由于能量汇集机器较大,不便移动,栋栋将它放在了

一个角上,坐标正好是(0, 0)。 能量汇集机器在汇集的过程中有一定的能量损失。如果一棵植物与能量汇集机器

连接而成的线段上有k棵植物,则能量的损失为2k + 1。例如,当能量汇集机器收集坐标为(2, 4)的植物时,由于

连接线段上存在一棵植物(1, 2),会产生3的能量损失。注意,如果一棵植物与能量汇集机器连接的线段上没有植

物,则能量损失为1。现在要计算总的能量损失。 下面给出了一个能量采集的例子,其中n = 5,m = 4,一共有20

棵植物,在每棵植物上标明了能量汇集机器收集它的能量时产生的能量损失。 在这个例子中,总共产生了36的能

量损失。

Input

仅包含一行,为两个整数n和m。

Output

仅包含一个整数,表示总共产生的能量损失。

Sample Input

【样例输入1】
5 4
【样例输入2】
3 4
 

Sample Output

【样例输出1】
36
【样例输出2】
20
对于100%的数据:1 ≤ n, m ≤ 100,000。

HINT

 

Source

 

[Submit][Status][Discuss]



发布了316 篇原创文章 · 获赞 23 · 访问量 4万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 编程工作室 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览