win10系统cpu版本 Tensorflow2.5.0的安装

本文详细记录了在电脑重装系统后,使用conda创建虚拟环境,然后在Python3.9环境下安装Tensorflow2.5.0的过程。作者提到了利用清华镜像源加速pip安装,以避免长时间等待,并在安装完成后进行了简单的测试,确保Tensorflow正确导入无误。
摘要由CSDN通过智能技术生成

在这里插入图片描述


前言

电脑重装系统了,顺便简单记录一下我的tensorflow==2.5.0 CPU的安装过程

一、创建一个虚拟环境?

conda create -n tf2 python=3.9

其中tf2为虚拟环境名字,随便起,python=3.9 感觉2023了,3.9好用一些。
在这里插入图片描述

二、确定 输入 y

在这里插入图片描述

三、激活你的环境

在这里插入图片描述

四、安装tensorflow==2.5.0

python3.9 可以安装的tensorflow版本如下:
Could not find a version that satisfies the requirement tensorflow==2.3 (from versions: 2.5.0, 2.5.1, 2.5.2, 2.5.3, 2.6.0rc0, 2.6.0rc1, 2.6.0rc2, 2.6.0, 2.6.1, 2.6.2, 2.6.3, 2.6.4, 2.6.5, 2.7.0rc0, 2.7.0rc1, 2.7.0, 2.7.1, 2.7.2, 2.7.3, 2.7.4, 2.8.0rc0, 2.8.0rc1, 2.8.0, 2.8.1, 2.8.2, 2.8.3, 2.8.4, 2.9.0rc0, 2.9.0rc1, 2.9.0rc2, 2.9.0, 2.9.1, 2.9.2, 2.9.3, 2.10.0rc0, 2.10.0rc1, 2.10.0rc2, 2.10.0rc3, 2.10.0, 2.10.1, 2.11.0rc0, 2.11.0rc1, 2.11.0rc2, 2.11.0, 2.11.1, 2.12.0rc0, 2.12.0rc1, 2.12.0, 2.13.0rc0)

pip install tensorflow==2.5.0

五、利用清华镜像源加速一下,不然等到猴年马月!

https://pypi.tuna.tsinghua.edu.cn/simple

六,开始安装!!

pip install tensorflow==2.5.0 -i https://pypi.tuna.tsinghua.edu.cn/simple

在这里插入图片描述

七、安装成功

在这里插入图片描述

八、进行测试

不需要复杂的测试命令,只需要调一下包即可!!
如果不报错,那么安装成功!!

import tensorflow as tf

在这里插入图片描述


TensorFlow 2.5.0 是谷歌开发的一个开源机器学习框架,广泛应用于各种深度学习应用。安装 TensorFlow 2.5.0 可以通过几种不同的方式,以下是一种推荐的安装方法: 1. 使用 Anaconda 环境管理工具安装: - 首先,确保你的系统已经安装了 Anaconda 或 Miniconda。 - 打开 Anaconda Prompt 或者终端。 - 创建一个新的虚拟环境,以确保依赖包的隔离。例如,创建一个名为 `tf_env` 的环境: ``` conda create -n tf_env python=3.8 ``` - 激活你的新环境: ``` conda activate tf_env ``` - 在激活的环境中安装 TensorFlow 2.5.0: ``` pip install tensorflow==2.5.0 ``` - 安装完成后,你可以通过输入 `python` 进入 Python 解释器,然后尝试导入 TensorFlow 模块来检查是否安装成功: ``` python >>> import tensorflow as tf >>> print(tf.__version__) 2.5.0 ``` 2. 使用 pip 直接安装: - 确保你的系统安装Python,并且 pip 版本是最新的。 - 打开命令行或终端。 - 使用 pip 命令直接安装 TensorFlow 2.5.0: ``` pip install tensorflow==2.5.0 ``` - 同样地,安装完成后可以通过输入 `python` 并尝试导入 TensorFlow 来验证安装。 3. 使用 Docker 容器安装: - 如果你使用 Docker,可以通过 Docker Hub 上的官方 TensorFlow 镜像进行安装。首先确保安装了 Docker。 - 拉取 TensorFlow 2.5.0 的 Docker 镜像: ``` docker pull tensorflow/tensorflow:2.5.0 ``` - 然后运行一个包含 TensorFlow 2.5.0 的 Docker 容器: ``` docker run -it -p 8888:8888 tensorflow/tensorflow:2.5.0 ``` - 这会启动一个 Jupyter Notebook 服务器,你可以在浏览器中通过 `http://localhost:8888` 访问。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值