【图像分类】Swin Transformer理论解读+实践测试

前言

Swin Transformer是2021年微软研究院发表在ICCV上的一篇文章,问世时在图像分类、目标检测、语义分割多个领域都屠榜。

根据论文摘要所述,Swin Transformer在图像分类数据集ImageNet-1K上取得了87.3%的准确率,在目标检测数据集COCO上取得了58.7%的box AP和51.1%的mask AP,在语义分割数据集ADE20K上去的了53.5%的mIoU。

论文名称:Swin Transformer: Hierarchical Vision Transformer using Shifted Windows
原论文地址: https://arxiv.org/abs/2103.14030
开源代码地址:https://github.com/microsoft/Swin-Transformer

思想概述

Swin Transformer的思想比较容易理解,如下图所示,ViT(Vision Transformer)的思想是将图片分成16x16大小的patch,每个patch进行注意力机制的计算。而Swin Transformer并不是将所有的图片分成16x16大小的patch,有16x16的,有8x8的,有4x4的。每一个patch作为一个单独的窗口,每一个窗口不再和其它窗口直接计算注意力,而是在自己内部计算注意力,这样就大幅减小了计算量。

为了弥补不同窗口之间的信息传递,Swin Transformer又提出了移动窗口(Shifted Window)的概念(Swin),后续详细进行分析。
在这里插入图片描述

分块详解

整体架构

Swin Transformer有多种变体,论文中给出的这幅图是Swin-T的模型架构图。
在这里插入图片描述
下面就按照图片输入到输出的顺序,对各模块进行分析。

Patch Partion

输入图片尺寸为HxWx3,Patch Partion作用就是将图片进行分块。对于每一个Patch,尺寸设定为4x4。然后将所有的Patch在第三维度(颜色通道)上进行叠加,那么经过Patch Partion之后,图片的维度就变成了[H/4,W/4,4x4x3]=[H/4,W/4,48]

Linear Embeding

Linear Embeding作用是对通道数进行线性变换,经过Linear Embeding之后,图片维度从[H/4, W/4, 48]变成了 [H/4, W/4, C]。

Swin Transformer Block

Swin Transformer Block是Swin Transformer的核心部分,首先明确Swin Transformer Block的输入输出图片维度是不发生变化的。图中的x2表示,Swin Transformer Block有两个结构,在右侧小图中,这两个结构仅有W-MSA和SW-MSA的差别,这两个结构是成对使用的,即先经过左边的带有W-MSA的结构再经过右边带有SW-MSA的结构。

W-MSA

W-MSA模块就是将特征图划分到一个个窗口(Windows)中,在每个窗口内分别使用多头注意力模块。
论文在这里还强调了一下W-MSA和MSA计算量的对比,计算公式如下:
在这里插入图片描述
MSA就是之前ViT不加窗口计算全局注意力。下面就来看看这两个式子是如何计算得到的。
先看MSA:在Transformer中,注意力的计算公式如下所示:
在这里插入图片描述
在ViT中,输入矩阵A的维度为[hw,C],Q的维度也是[hw,C],那么相乘的权重矩阵维度W1的维度是[C,C]。Q=AxW1,这样的的计算量就是 h w C 2 hwC^2 hwC2,同时K和V的计算同理,这样就已经有 3 h w C 2 3hwC^2 3hwC2

之后,Q和K的转置相乘,即[hw,C]x[C,hw],这样的计算量为 ( h w ) 2 C (hw)^2C (hw)2C,同理再乘上V,那样就已经有 3 h w C 2 + 2 ( h w ) 2 C 3hwC^2+2(hw)^2C 3hwC2+2(hw)2C计算量。

最后,考虑到多头注意力机制,所有的计算头最终还需要和一个融合矩阵相乘,又多一个 h w C 2 hwC^2 hwC2,这样MSA总的计算量就为 4 h w C 2 + 2 ( h w ) 2 C 4hwC^2+2(hw)^2C 4hwC2+2(hw)2C

下面再看W-MSA:这里的M指的是一个窗口的长宽,即一个窗口尺寸为MxM,那么对于一个窗口而言,完全可以带入上面MSA的公式,即一个窗口的计算量为 4 M 2 C 2 + 2 M 4 C 4M^2C^2+2M^4C 4M2C2+2M4C,窗口总数为 h M × w M \frac{h}{M}\times\frac{w}{M} Mh×Mw
因此W-MSA总的计算量就为 h M × w M × ( 4 M 2 C 2 + 2 M 4 C ) = 4 h w C 2 + 2 M 2 h w C \frac{h}{M}\times\frac{w}{M}\times(4M^2C^2+2M^4C)=4hwC^2+2M^2hwC Mh×Mw×(4M2C2+2M4C)=4hwC2+2M2hwC

如果h和w很大,而M比较小,那么这样操作将大大减少计算量。

SW-MSA

第一个Swin Transformer Block的MLP结构和之前ViT一样,没有新东西,下面就到第二个Swin Transformer Block中的SW-MSA模块。

SW-MSA主要是为了让窗口与窗口之间可以发生信息传输。
论文中给出了这样一幅图来描述SW-MSA。
在这里插入图片描述
值得注意的是,表面上看从4个窗口变成了9个窗口,实际上是整个窗口网格从左上角分别向右侧和下方各偏移了M/2个像素。但是这样又产生了一个新的问题,那就是每个窗口大小不一样,不利于计算。

于是作者又想到了一个“天才级”的想法,即将左上角的窗口移动到右下角进行合并。
在这里插入图片描述

这样就可以计算在新生成的四个窗口中计算内部注意力,但是仍然存在的一个问题是原本的不同模块是从上面移下来的,不应该和原本的下方模块计算注意力,比如天空和大地计算注意力会出问题。于是作者又添加了一个掩码矩阵。对于每一个窗口分别设计一个掩码矩阵,其中对于不应该被计算的部分,掩码矩阵就赋值为-100,这样后续通过Softmax计算之后,最终就变成0,相当于起到过滤作用。

Patch Merging

第一个Stage结束之后,后面3个Stage的结构完全一样。和第一个Stage不同的是,后面几个Stage均多了一个Patch Merging的操作。
Patch Merging的操作不难理解,首先是将一个矩阵按间隔提取出四个小矩阵,然后将这四个矩阵在第三通道上进行Concat,在进行LayerNorm之后,通过一个线性层映射成2个通道。这样,通过Patch Merging操作之后的特征图长宽分别减半,通道数翻倍。

下图比较清晰地展示了 Patch Merging的操作过程,图源[1]。
在这里插入图片描述

相对位置偏置(Relative Position Bias)

上面已经按照流程将Swin Transformer的核心内容整理清楚了,在论文的最后部分,作者还提出了一种相对位置偏置的计算方法。

在这里插入图片描述
使用该方法之后,可以看到结果会有小幅提升:
在这里插入图片描述
不过,作者没有细讲该方法的具体原理,看到这篇文章解读得不错,直接放在这里。

对比测试结果

最后,作者在不同领域,和其它算法进行了对比测试,可以看到,Swin-L基本均取得了最好效果。
在这里插入图片描述
在这里插入图片描述

不同版本

Swin Transformer根据不同的配置参数大小,主要可以分下面四个版本。

在这里插入图片描述
表中:

  • win. sz. 7x7表示使用的窗口(Windows)的大小
  • dim表示feature map的channel深度(或者说token的向量长度)
  • head表示多头注意力模块中head的个数

实践测试

实践测试我找的是和之前ViT类似的图像分类例子,使用的花卉数据集。
代码仓库地址:https://github.com/WZMIAOMIAO/deep-learning-for-image-processing/tree/master/pytorch_classification/swin_transformer

我用Swin-S这个模型进行训练,相比于之前的ViT,模型训练速度几乎提升了一倍,最终精度也比ViT略高一些。

代码备份

下面是我跑的代码备份,里面包括了我所下载的预训练模型。(模型大小也几乎是ViT的一半)
https://pan.baidu.com/s/1B9SAXZ7AWPlwpZZ_T6gUKQ?pwd=8888

References

[1]https://blog.csdn.net/qq_37541097/article/details/121119988
[2]https://www.bilibili.com/video/BV13L4y1475U

  • 6
    点赞
  • 77
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 3
    评论
### 回答1: Swin Transformer是一种用于图像分类的模型,它使用了Self-supervised Windows (Swin) 和 Transformer结构来提高分类精度。Swin Transformer能够在不需要额外的监督信息的情况下自我学习图像特征,并且在处理大尺寸图像时能够保持高效。 ### 回答2: Swin Transformer是一种新型的Transformer模型,它在很多计算机视觉任务上取得了非常优秀的表现,其中就包括图像分类任务。 与传统的Transformer模型相比,Swin Transformer模型采用了层次式的Transformer结构,通过分层的方式减少了模型参数的数量,同时又保持了比较好的模型效果。此外,在模型训练的过程中,Swin Transformer还采用了分组卷积和动态图像块的方式来提高模型的效率和准确性。 对于图像分类任务,Swin Transformer通常采用的是CNN+Swin Transformer的混合模型,即将图像通过CNN提取特征,再将特征输入到Swin Transformer中进行分类。这样的模型不仅可以有效地提高模型的效率和准确性,还可以适应各种不同的图像分类任务。 在Swin Transformer的实验中,研究人员使用了多个公开数据集来测试模型的性能,包括ImageNet、CIFAR-100、CIFAR-10、Oxford Flowers-102等。实验结果显示,Swin Transformer在这些数据集上的表现都非常出色,甚至有些数据集上的表现已经超越了目前最先进的模型。 总的来说,Swin Transformer的出现为图像分类任务带来了全新的思路和方法,其层次式的Transformer结构和动态图像块的特点可以充分地利用图像的空间信息和上下文信息,从而取得更好的分类结果。相信在未来的研究中,这一模型还将在计算机视觉领域发挥更重要的作用。 ### 回答3: Swin Transformer深度学习模型中一种新兴的图像分类算法,它通过采用分层的注意力机制和普通的Transformer结构相结合,在图像分类领域中实现了最优的结果。 传统的卷积神经网络(CNN)在图像分类上表现良好,但是其局限性在于需要对输入图像进行固定大小的处理,同时CNN的计算效率难以进一步提高。而Swin Transformer则通过将一个大的图像切分成小的图像块,通过分层的注意力机制将图像块信息整合起来,最后再通过全局汇聚来输出图像的标签。 Swin Transformer模型的具体实现包括三个关键方面:首先是每个图像块的特征表示,其次是图像块之间的信息传递,还有最后的全局汇聚操作。其中,每个图像块的特征表示采用了基本的Convolution结构,其次在不同层次上,Swin Transformer结合了普通Transformer的self-attention机制和local-global attention机制,使得模型能够关注更多不同尺度的图像特征,从而具有更强的泛化能力。 Swin Transformer在多个图像分类数据集上进行了实验并取得了最优结果,比如CIFAR-10/100和ImageNet等。当前,Swin Transformer已经成为最先进的图像分类算法之一,正在被广泛应用于计算机视觉领域的研究和应用中。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

zstar-_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值