文章目录
- 一,智慧矿井智能分析数据集/煤矿井下钻场智能分析数据集(两套)
- 传送门链接:[煤矿采掘工作面智能分析数据集 煤矿井下钻场智能分析数据集-CSDN博客](https://blog.csdn.net/2401_83580557/article/details/142409027)
- 二,桥梁部件和缺陷多标签分割与检测
- 传送门链接:[智慧桥梁数据集 —— 桥梁部件和缺陷多标签分割与检测_桥梁病害数据集-CSDN博客](https://blog.csdn.net/2401_83580557/article/details/142261623)
- 三,隧道裂缝混泥土裂缝裂痕检测数据集
- 传送门链接:
- [隧道裂缝混泥土裂缝裂痕检测数据集 5000张 带标注 voc-CSDN博客](https://blog.csdn.net/2401_83580557/article/details/142101326)
- 四,滑坡落石检测数据集
- 滑坡落石检测数据集 1500张 滑坡落石 带标注 voc yolo
- 传送门链接:
- [滑坡落石检测数据集 1500张 滑坡落石 带标注 voc yolo-CSDN博客](https://blog.csdn.net/2401_83580557/article/details/142310298)
- 五,轴承缺陷检测数据集
- 轴承缺陷检测数据集 3200张 轴承缺陷 带标注 voc yolo
- **六,风力发电叶片缺陷检测数据集**
- 传送门链接:
- 七,铁路输电线路异物检测数据集
- 传送门链接:[铁路输电线路异物检测数据集_铁路沿线轻飘浮物数据集-CSDN博客](https://blog.csdn.net/2401_83580557/article/details/142298425)
- 八,RDD2022道路瑕疵数据集
- 传送门链接:
- 传送门链接:
一,智慧矿井智能分析数据集/煤矿井下钻场智能分析数据集(两套)
添加图片注释,不超过 140 字(可选)
编辑 数据1:数据1包含煤矿采掘工作面工人安全帽检测,工人行为检测(行走,站立,坐,操作,弯腰,靠,摔,爬),液压支撑防护(液压支撑防护板所有角度如防护板0到30度,30度到60…等多角度检测,支撑异常,剪煤机等)检测,采煤人检测,运煤线检测,煤块检测,数据集共22GB,13万张真实拍摄影像,yolo和coco两种标注格式。
添加图片注释,不超过 140 字(可选)
编辑 数据2:数据2数据集总共包含70948张图片,囊括了三类不同亮度水平(包括低亮度、中亮度和高亮度)以及正面、左侧和右侧三类拍摄角度,并覆盖了目标遮挡、目标模糊等多种复杂场景,收录了煤矿井下钻场出现频率较高的5类重要目标,分别是夹持器、钻机卡盘、煤矿工人、矿井安全帽和钻杆,并提供了PASCAL VOC,yolo格式的标注文件。
添加图片注释,不超过 140 字(可选)
编辑
智慧矿井智能分析数据集
数据集描述
该数据集是一个专门用于煤矿井下智能监控和安全分析的数据集,旨在帮助研究人员和开发者训练和评估基于深度学习的目标检测、行为识别和异常检测模型。数据集分为两个部分,涵盖了煤矿采掘工作面的多种场景和目标,包括工人安全帽检测、工人行为检测、液压支撑防护检测等。数据集提供了高分辨率的真实拍摄图像,并且标注质量很高,支持多种标注格式。
数据1:煤矿采掘工作面智能分析数据集
数据规模
- 总样本数量:130,000张真实拍摄影像
- 数据量:约22GB
- 标注格式:Yolo和COCO两种标注格式
- 目标类别:
- 工人安全帽检测
- 工人行为检测(行走、站立、坐、操作、弯腰、靠、摔、爬)
- 液压支撑防护检测(不同角度如0到30度、30度到60度等)
- 支撑异常检测
- 剪煤机检测
- 采煤人检测
- 运煤线检测
- 煤块检测
图像特性
- 高分辨率影像:图像为高分辨率,确保细节清晰。
- 多目标检测:涵盖多种目标和复杂的行为模式。
- 多样化场景:覆盖了煤矿采掘工作面的各种实际场景。
- 高质量标注:提供详细的边界框和类别标签,支持Yolo和COCO格式。
应用场景
- 工人安全监测:通过实时监控工人的安全帽佩戴情况和行为,提高作业安全性。
- 设备状态监控:检测液压支撑和其他机械设备的状态,预防潜在故障。
- 生产效率优化:通过对采煤人和运煤线的检测,优化生产流程和资源配置。
- 科研分析:用于研究目标检测和行为识别算法在煤矿环境中的应用。
数据2:煤矿井下钻场智能分析数据集
数据规模
- 总样本数量:70,948张图片
- 数据量:具体大小未提供
- 标注格式:PASCAL VOC和Yolo格式
- 目标类别:
- 夹持器
- 钻机卡盘
- 煤矿工人
- 矿井安全帽
- 钻杆
图像特性
- 多亮度水平:包括低亮度、中亮度和高亮度三种不同的光照条件。
- 多拍摄角度:正面、左侧和右侧三种不同的拍摄角度。
- 复杂场景:包含目标遮挡、目标模糊等多种复杂场景。
- 高质量标注:提供详细的边界框和类别标签,支持PASCAL VOC和Yolo格式。
应用场景
- 工人安全监测:通过实时监控矿井工人的安全帽佩戴情况,提高作业安全性。
- 设备状态监控:检测夹持器、钻机卡盘和钻杆的状态,预防潜在故障。
- 生产效率优化:通过对钻场内各种设备和工人的检测,优化钻探作业流程。
- 科研分析:用于研究目标检测算法在不同光照条件和复杂场景下的鲁棒性。
传送门链接:煤矿采掘工作面智能分析数据集 煤矿井下钻场智能分析数据集-CSDN博客
二,桥梁部件和缺陷多标签分割与检测
智慧桥梁数据集,桥梁部件和缺陷多标签分割与检测数据集,5.4GB,来自100多座不同桥梁的9920张图像,专门为实际使用而设计的包括桥梁检查标准定义的所有视觉上独特的损伤类型。数据集中的标签类别,共分为3大类,19小类,分割提供yolo,json两种标注方式,检测提供yolo标注方式。
添加图片注释,不超过 140 字(可选)
编辑 第一类
混凝土缺陷标签:空洞、风化、短吻鳄裂缝、剥落、重新成型、暴露的钢筋、空洞区域、裂缝、岩袋类,
添加图片注释,不超过 140 字(可选)
编辑 第二类
一般缺陷标签:锈蚀、湿斑、风化、涂鸦类。 第三类
添加图片注释,不超过 140 字(可选)
添加图片注释,不超过 140 字(可选)
编辑
传送门链接:智慧桥梁数据集 —— 桥梁部件和缺陷多标签分割与检测_桥梁病害数据集-CSDN博客
三,隧道裂缝混泥土裂缝裂痕检测数据集
添加图片注释,不超过 140 字(可选)
编辑
隧道裂缝混凝土裂缝裂痕检测数据集
数据集规模:
- 图像数量:5000张
- 标注类型:裂缝检测(包括隧道内壁、桥梁、建筑结构中的裂缝)
- 格式兼容性:支持VOC标注格式
数据集内容:
该数据集专门用于训练和评估计算机视觉模型,特别是在隧道和其他混凝土结构的裂缝检测领域。图像可能来源于隧道内部的不同部位,如拱顶、侧墙、地面等,以及桥梁和其他混凝土结构。图像中包含不同宽度、长度、形态的裂缝,可能出现在不同的光照条件下和背景环境中。
标注信息:
添加图片注释,不超过 140 字(可选)
编辑
每张图像都配有详细的标注信息,标注内容包括裂缝的位置(边界框)以及裂缝的相关属性(如有)。在VOC格式下,这些信息通常存储在XML文件中,每个图像对应一个XML文件,其中包含每个目标对象的详细信息,如类别标签、边界框坐标等。
传送门链接:
隧道裂缝混泥土裂缝裂痕检测数据集 5000张 带标注 voc-CSDN博客
四,滑坡落石检测数据集
滑坡落石检测数据集 1500张 滑坡落石 带标注 voc yolo
滑坡落石检测数据集 1500张 滑坡落石 带标注 voc yolo
项目背景:
添加图片注释,不超过 140 字(可选)
编辑
滑坡落石是地质灾害中的一种常见现象,它对人类生活和基础设施构成了严重威胁。及时准确地检测滑坡落石对于预防灾害发生、减少损失至关重要。传统的检测方法往往依赖于人工巡查,不仅效率低下,而且存在安全隐患。本数据集旨在为滑坡落石检测提供高质量的标注数据,支持自动化检测系统的开发与应用。
添加图片注释,不超过 140 字(可选)
编辑
数据集概述:
- 名称:滑坡落石检测数据集
- 规模:共计1,500张图像
- 类别:单一类别,“0”表示滑坡落石(Landslide Debris)
- 标注格式:支持VOC和YOLO格式的标注文件,可以直接用于模型训练
数据集特点:
添加图片注释,不超过 140 字(可选)
编辑
- 针对性强:专注于滑坡落石的检测,确保数据集的针对性和实用性。
- 高质量标注:每张图像都已详细标注,确保数据的准确性和可靠性。
- 适用范围广:支持多种标注格式(VOC、YOLO),方便科研人员和开发者直接使用。
- 标准格式:采用广泛使用的标注文件格式,方便导入不同的检测框架。
传送门链接:
滑坡落石检测数据集 1500张 滑坡落石 带标注 voc yolo-CSDN博客
五,轴承缺陷检测数据集
轴承缺陷检测数据集 3200张 轴承缺陷 带标注 voc yolo
添加图片注释,不超过 140 字(可选)
编辑
项目背景:
轴承是机械设备中的重要部件之一,其性能直接影响到机械系统的可靠性和寿命。轴承缺陷(如磨损、裂纹、剥落等)会导致设备故障,从而影响生产效率和安全性。传统的轴承缺陷检测方法主要依靠人工检查,这种方式不仅耗时耗力,而且容易出现误检漏检的情况。因此,开发一套自动化的轴承缺陷检测系统具有重要意义。本数据集旨在为轴承缺陷检测提供高质量的标注数据,支持自动化检测系统的开发与应用。
数据集概述:
添加图片注释,不超过 140 字(可选)
编辑
- 名称:轴承缺陷检测数据集
- 规模:共计3200张图像
- 类别:多类轴承缺陷
- 标注格式:支持VOC和YOLO格式的标注文件,可以直接用于模型训练
数据集特点:
- 针对性强:专注于轴承缺陷检测,确保数据集的针对性和实用性。
- 高质量标注:每张图像都已详细标注,确保数据的准确性和可靠性。
- 适用范围广:支持多种标注格式(VOC、YOLO),方便科研人员和开发者直接使用。
- 标准格式:采用广泛使用的标注文件格式,方便导入不同的检测框架。
数据集内容:
添加图片注释,不超过 140 字(可选)
编辑
假设数据集中包含以下几类轴承缺陷:
- 磨损(Wear)
- 裂纹(Crack)
- 剥落(Spalling)
- 腐蚀(Corrosion)
- 划痕(Scratch)
六,风力发电叶片缺陷检测数据集
力发电叶片缺陷检测数据集】nc: 4 names: [‘Burn Mark’, ‘Coating_defects’, ‘Crack’, 'EROSION '] 名称:【‘烧伤痕迹’, ‘涂层缺陷’, ‘裂缝’,‘侵蚀’】共1095张,8:1:1比例划分,(train;876张,val:109张,test:110张标注文件为YOLO适用的txt格式。可以直接用于模型训练。
添加图片注释,不超过 140 字(可选)
编辑 ,
项目背景:
风力发电作为可再生能源的重要组成部分,在全球范围内得到广泛应用。风力发电叶片的完好与否直接关系到风力发电机组的运行效率和使用寿命。叶片缺陷检测是保证风力发电机组正常运行的关键环节之一。传统的缺陷检测方法主要依靠人工视觉检查,这种方式不仅耗时耗力,而且容易受到主观因素的影响。本数据集旨在为风力发电叶片的缺陷检测提供高质量的标注数据,支持自动化检测系统的开发与应用。
数据集概述:
添加图片注释,不超过 140 字(可选)
编辑
-
名称:风力发电叶片缺陷检测数据集
-
规模:共计1,095张图像
-
数据划分:按照8:1:1的比例划分为训练集、验证集和测试集
-
训练集:876张图像
-
验证集:109张图像
-
测试集:110张图像
-
类别:4种缺陷标签,“0”表示烧伤痕迹(Burn Mark), “1”表示涂层缺陷(Coating Defects), “2”表示裂缝(Crack), “3”表示侵蚀(Erosion)
-
标注格式:适用于YOLO的.txt格式标注文件,可以直接用于模型训练
传送门链接:
[风力发电叶片缺陷检测数据集 nc: 4 names: ‘Burn Mark‘, ‘Coating_defects‘, ‘Crack‘, ‘EROSION ‘]名称:【‘烧伤痕迹‘, ‘涂层缺陷‘,_风机叶片缺陷识别-CSDN博客
七,铁路输电线路异物检测数据集
数据集名称
添加图片注释,不超过 140 字(可选)
编辑
铁路输电线路异物检测数据集
数据集描述
这是一个专注于铁路输电线路异物检测的数据集,旨在通过机器学习和计算机视觉技术识别和分类铁路输电线上可能存在的异物。数据集包括了四种常见的异物类别:鸟巢、塑料袋、气球和漂浮物。该数据集使用COCO(Common Objects in Context)格式进行标注,适合用于训练和支持COCO格式的检测模型,如Mask R-CNN、YOLO等。
数据集特点
- 针对性强:数据集专门针对铁路输电线路异物检测,涵盖了常见的异物类型。
- 数据量大:包含超过14000张图像,且每个图像中有多个标注,总计超过40000个标注实例,确保了模型训练所需的数据量。
- 详细标注:所有图像均使用COCO格式进行了细致标注,提供了准确的边界框和类别信息。
- 多样场景:数据集中的图像覆盖了不同的环境条件和时间段,有助于提高模型在复杂场景下的泛化能力。
- 高分辨率图像:数据集总大小为6GB,意味着图像质量较高,有助于提高异物检测的准确性。
- 实用性:数据集可以直接应用于铁路运输安全监控,辅助维护人员及时发现并处理潜在的安全隐患。
数据集组成
-
类别:
-
鸟巢(Nest)
-
塑料袋(Plastic Bag)
-
气球(Balloon)
-
漂浮物(Floating Debris)
-
图像数量:超过14000张图像
-
标注数量:超过40000个标注实例
-
数据量:6GB
-
标注格式:COCO格式
传送门链接:铁路输电线路异物检测数据集_铁路沿线轻飘浮物数据集-CSDN博客
八,RDD2022道路瑕疵数据集
添加图片注释,不超过 140 字(可选)
编辑
RDD2022 道路瑕疵数据集 txt标签或者xml标签 一共23767张图片 D00 D01 D20 D40四类 D00纵向裂缝 D10横向裂缝 D20网状裂缝 D40坑洞。
RDD2022 道路瑕疵检测数据集介绍
数据集概述
RDD2022(Road Defect Detection 2022)是一个专门用于道路瑕疵检测的数据集,旨在帮助研究人员和工程师开发更加准确的道路维护系统。该数据集包含了大量的道路瑕疵图像,涵盖了多种类型的常见道路损坏情况,这对于提高道路安全性和耐久性具有重要意义。
数据集详情
- 图像数量:共包含23,767张图像。
- 标注格式:提供了文本(txt)标签或XML标签两种格式,便于不同的目标检测框架使用。
- 瑕疵类型:
- D00(纵向裂缝):通常沿着道路方向出现的裂缝。
- D10(横向裂缝):垂直于道路方向的裂缝。(注意:这里可能存在一个笔误,原本应该是D10而非D20,请确认具体类别。)
- D20(网状裂缝):多条裂缝交织形成网格状图案。
- D40(坑洞):道路上出现的凹陷区域,通常是由于材料老化或路面承载力不足造成的。
应用领域
- 道路维护:利用该数据集训练的模型可以帮助及时发现道路缺陷,从而采取措施防止事故的发生。
- 智能交通系统:集成到智能交通管理系统中,辅助道路管理机构进行定期检查和维护计划制定。
- 自动驾驶技术:对于自动驾驶车辆而言,能够识别并避开这些瑕疵是保证行车安全的重要环节。
传送门链接:
数量**:共包含23,767张图像。
- 标注格式:提供了文本(txt)标签或XML标签两种格式,便于不同的目标检测框架使用。
- 瑕疵类型:
- D00(纵向裂缝):通常沿着道路方向出现的裂缝。
- D10(横向裂缝):垂直于道路方向的裂缝。(注意:这里可能存在一个笔误,原本应该是D10而非D20,请确认具体类别。)
- D20(网状裂缝):多条裂缝交织形成网格状图案。
- D40(坑洞):道路上出现的凹陷区域,通常是由于材料老化或路面承载力不足造成的。
应用领域
- 道路维护:利用该数据集训练的模型可以帮助及时发现道路缺陷,从而采取措施防止事故的发生。
- 智能交通系统:集成到智能交通管理系统中,辅助道路管理机构进行定期检查和维护计划制定。
- 自动驾驶技术:对于自动驾驶车辆而言,能够识别并避开这些瑕疵是保证行车安全的重要环节。
传送门链接:
RDD2022道路瑕疵数据集 txt标签或者xml标签一共23767张图片D00 D01 D20 D40四类D00纵向裂缝 D10横向裂缝 D20网状裂缝 D40坑洞_rdd2022作品-CSDN博客