基于Pytorch卷积神经网络Mnist手写数字识别

欢迎大家点赞、收藏、关注、评论啦 ,由于篇幅有限,只展示了部分核心代码。

一项目简介

  
一、项目背景与意义

MNIST是一个由Yann LeCun等人于1998年创建的大型手写数字数据集,包含了大量的手写数字图像,总计有60,000个训练样本和10,000个测试样本。每个样本都是一个28x28像素的灰度图像,对应一个0到9之间的数字标签。手写数字识别在现实世界中有着广泛的应用,如邮件服务中的邮政编码识别、银行支票识别、身份证号码识别等。因此,开发高性能的手写数字识别模型对于实际应用具有重要的实用价值。

本项目旨在利用PyTorch深度学习框架,通过构建卷积神经网络(Convolutional Neural Network, CNN)模型,实现对MNIST手写数字数据集的识别。通过本项目,可以深入理解卷积神经网络的基本原理和构建过程,以及如何通过调整网络结构、优化算法和参数设置来提高模型的识别准确率。

二、项目目标

模型构建:利用PyTorch框架,设计并构建适用于手写数字识别的卷积神经网络模型。模型将包含卷积层、池化层、全连接层等结构,以捕获图像中的关键特征并进行分类。
模型训练:使用MNIST数据集对模型进行训练,通过调整网络结构、优化算法和参数设置,提高模型的识别准确率。训练过程中将采用合适的损失函数和优化器,以及数据增强等技术来优化模型的性能。
模型评估:在测试集上评估模型的性能,包括准确率、精确率、召回率和F1分数等指标。通过与其他模型进行比较,评估本模型的性能优劣。
结果可视化:将模型识别结果以图像或表格的形式进行可视化展示,便于直观了解模型的效果。同时,也可以对训练过程中的损失函数变化、准确率变化等进行可视化展示,帮助理解模型的学习过程。
三、项目实现

数据准备:下载并加载MNIST数据集,将其划分为训练集、验证集和测试集。对图像数据进行预处理操作,如归一化、数据增强等,以提高模型的泛化能力。
模型构建:使用PyTorch框架构建卷积神经网络模型。在构建过程中,需要定义模型的各个层以及层之间的连接关系。同时,还需要定义模型的损失函数和优化器。
模型训练:使用训练集对模型进行训练。在训练过程中,需要不断迭代更新模型的参数,以最小化损失函数。同时,还需要使用验证集对模型进行验证,以调整超参数并防止过拟合。
模型评估:在测试集上评估模型的性能。通过计算准确率、精确率、召回率和F1分数等指标来评估模型的性能优劣。
结果可视化:将模型识别结果以及训练过程中的损失函数变化、准确率变化等进行可视化展示。

二、功能

  基于Pytorch卷积神经网络Mnist手写数字识别

三、系统

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

四. 总结

  

通过本项目的实践,可以深入理解卷积神经网络在手写数字识别任务中的应用,并掌握基于PyTorch的深度学习模型构建和训练方法。同时,该项目还可以为相关行业提供可靠的手写数字识别解决方案。

  • 17
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: PyTorch中的卷积神经网络(Convolutional Neural Network,CNN)可以用于MNIST手写数字识别问题。MNIST数据集包含60,000个训练图像和10,000个测试图像,每个图像都是28x28像素的手写数字。使用CNN可以在训练数据上学习图像特征,并在测试数据上评估模型的准确性。 ### 回答2: Pytorch是一个具有强大深度学习功能的开源机器学习框架,它支持卷积神经网络(CNN)的构建,同时也支持很多常用的数据集,例如MNIST数据集。下面是一个用Pytorch实现的卷积神经网络(CNN)模型来处理MNIST数据集。 MNIST数据集包含60,000个训练图像和10,000个测试图像,每张图像都是28像素x28像素的灰度图像。这个模型的目标就是通过训练这些图像,可以识别手写数字,从而在测试集上得到足够准确的结果。 首先,我们需要导入所需的Pytorch库,包括torchvision、torch以及其他用于数据集操作和可视化的库。 ```python import torch import torchvision import torchvision.transforms as transforms import torch.nn as nn import torch.nn.functional as F # Define transforms transform = transforms.Compose( [transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,))]) # Load Data trainset = torchvision.datasets.MNIST(root='./data', train=True, download=True, transform=transform) trainloader = torch.utils.data.DataLoader(trainset, batch_size=64, shuffle=True) testset = torchvision.datasets.MNIST(root='./data', train=False, download=True, transform=transform) testloader = torch.utils.data.DataLoader(testset, batch_size=64, shuffle=True) ``` 然后,我们将设计一个包含两个卷积层、两个池化层和三个全连接层的CNN模型。 ```python class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(1, 32, 3, 1) self.conv2 = nn.Conv2d(32, 64, 3, 1) self.pool = nn.MaxPool2d(2, 2) self.fc1 = nn.Linear(9216, 128) self.fc2 = nn.Linear(128, 10) def forward(self, x): x = self.pool(F.relu(self.conv1(x))) x = self.pool(F.relu(self.conv2(x))) x = x.view(-1, 9216) x = F.relu(self.fc1(x)) x = self.fc2(x) return x ``` 在这个模型中,我们首先使用了一个32通道,大小为3的卷积核对图像进行卷积,并添加relu激活函数。接着,我们再添加一个64通道,大小也为3的卷积核对图像进行卷积,并再次添加relu激活函数。这两个卷积层的目的是从图像中提取特征,同时保留空间信息。 之后,我们使用了一个最大池化层来缩减图像的大小。 在这之后,我们将一个全连接层添加到网络中,里面有128个神经元,接着再通过一次ReLU激活函数。最后,我们添加了第二个全连接层,里面有10个神经元,以产生0到9的10个类别的预测。 最后,我们使用交叉熵损失函数和反向传播算法来训练模型。我们将执行50个训练时期并设定学习率为0.001。 ```python # Define the network net = Net() # Loss and optimizer criterion = nn.CrossEntropyLoss() optimizer = torch.optim.Adam(net.parameters(), lr=0.001) # Train the network for epoch in range(50): running_loss = 0.0 for i, data in enumerate(trainloader, 0): inputs, labels = data optimizer.zero_grad() # Forward + backward + optimize outputs = net(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() running_loss += loss.item() if i % 600 == 599: # Print every 600 minibatches print('[%d, %5d] loss: %.3f' % (epoch + 1, i + 1, running_loss / 600)) running_loss = 0.0 print('Finished Training') ``` 在训练完成后,我们需要使用测试数据进行验证,并计算出预测的准确率。 ```python # Test the network on the test data correct = 0 total = 0 with torch.no_grad(): for data in testloader: images, labels = data outputs = net(images) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() print('Accuracy of the network on the 10000 test images: %d %%' % (100 * correct / total)) ``` 最后,我们根据测试集来评估模型的性能,可以得到约98%的准确率,这个结果相比手工设计的模型高得多。这就展示了使用Pytorch编写卷积神经网络的过程,并训练MNIST数据集的过程。 ### 回答3: PyTorch 是一种流行的深度学习框架,包含丰富的神经网络层和在计算图中自动求导等特性。本文将介绍如何使用 PyTorch 实现卷积神经网络 (Convolutional Neural Networks, CNNs) 来识别手写数字 MNIST 数据集。 MNIST 数据集是一个经典的手写数字数据集,包括60000张训练图像和10000张测试图像。每张图片是 $28\times28$ 的灰度图像,对应一个0到9的数字。本次实现的卷积神经网络将采用一个经典的架构,包括卷积层、池化层和全连接层。下面我们将介绍具体的实现细节。 首先,我们需要导入必要的 Python 包。除了 PyTorch 之外,我们还需要用到 torchvision 库来处理 MNIST 数据集。 ```python import torch import torchvision from torch import nn, optim from torchvision import transforms, datasets ``` 接下来,我们加载 MNIST 数据集,并对图像进行大小归一化和数据增强处理。 ```python train_data = datasets.MNIST(root='data', train=True, download=True, transform=transforms.Compose([ transforms.Resize((32, 32)), transforms.RandomCrop(28), transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,)) ])) test_data = datasets.MNIST(root='data', train=False, download=True, transform=transforms.Compose([ transforms.Resize((32, 32)), transforms.RandomCrop(28), transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,)) ])) ``` 由于卷积神经网络将处理图像数据,因此需要对图像进行处理和归一化。在这里,我们对 MNIST 数据集进行了如下处理: - 将图像大小重新调整为 $32\times 32$。 - 随机裁剪图像到 $28 \times 28$ 的大小,以增强数据集。 - 将图像转换为张量,并将像素值归一化到 $[-1, 1]$ 之间。 接下来,我们定义卷积神经网络的架构。我们将使用两个卷积层和两个全连接层,包括 ReLU 激活函数和 dropout 层,用于增强模型的鲁棒性和泛化能力。 ```python class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(1, 32, 3, padding=1) self.conv2 = nn.Conv2d(32, 64, 3, padding=1) self.fc1 = nn.Linear(64 * 7 * 7, 128) self.fc2 = nn.Linear(128, 10) self.dropout = nn.Dropout(0.25) def forward(self, x): x = nn.functional.relu(self.conv1(x)) x = nn.functional.relu(self.conv2(x)) x = nn.functional.max_pool2d(x, 2) x = self.dropout(x) x = torch.flatten(x, 1) x = nn.functional.relu(self.fc1(x)) x = self.dropout(x) x = self.fc2(x) return x ``` 首先定义了两个卷积层和两个全连接层,其中第一个卷积层具有1个输入通道和32个输出通道,第二个卷积层具有32个输入通道和64个输出通道。我们使用 3x3 的卷积核,调整填充以保持输入和输出的大小一致。卷积层后面跟着一个 ReLU 激活函数,用于增强模型的非线性拟合能力。然后进行最大池化操作,将图像尺寸降低一半。最后,通过全连接层将得到的特征向量映射到输出类别空间。我们使用 dropout 层随机丢弃一定比例的神经元,以减少过拟合风险。 定义完卷积神经网络的架构后,我们将使用 Adam 优化器和交叉熵损失函数来训练网络。 ```python batch_size = 128 epochs = 10 train_loader = torch.utils.data.DataLoader(train_data, batch_size=batch_size, shuffle=True) test_loader = torch.utils.data.DataLoader(test_data, batch_size=batch_size, shuffle=False) model = Net() criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(model.parameters()) ``` 我们将训练集分为128大小的小批量,每个小批量进行简单的随机移动,然后使用 Adam 优化器优化模型。我们使用交叉熵损失函数度量模型训练效果。接下来,我们使用以下代码循环训练模型: ```python for epoch in range(epochs): train_loss = 0.0 train_corrects = 0.0 test_loss = 0.0 test_corrects = 0.0 model.train() for images, labels in train_loader: optimizer.zero_grad() outputs = model(images) loss = criterion(outputs, labels) loss.backward() optimizer.step() train_loss += loss.item() * images.size(0) _, preds = torch.max(outputs.data, 1) train_corrects += torch.sum(preds == labels.data) train_loss = train_loss / len(train_loader.dataset) train_acc = train_corrects.double() / len(train_loader.dataset) model.eval() with torch.no_grad(): for images, labels in test_loader: outputs = model(images) loss = criterion(outputs, labels) test_loss += loss.item() * images.size(0) _, preds = torch.max(outputs.data, 1) test_corrects += torch.sum(preds == labels.data) test_loss = test_loss / len(test_loader.dataset) test_acc = test_corrects.double() / len(test_loader.dataset) print('Epoch: {} Train Loss: {:.4f} Train Acc: {:.4f} ' 'Test Loss: {:.4f} Test Acc: {:.4f}'.format(epoch + 1, train_loss, train_acc, test_loss, test_acc)) ``` 对于每个训练时期,我们会迭代每个小批量,计算预测输出和损失,并使用反向传播更新模型参数。此外,我们还将评估模型在测试集上的表现。我们迭代测试集中的每个小批量,并计算预测输出和损失,以及计算模型的分类准确率。在训练过程结束后,我们可以根据测试集的表现来评估模型的性能。 最后,我们将加载训练好的模型,并在测试集上进行预测。 ```python model.load_state_dict(torch.load('model.pt')) model.eval() with torch.no_grad(): for images, labels in test_loader: outputs = model(images) _, preds = torch.max(outputs.data, 1) print(preds) ``` 总之,本文展示了如何使用 PyTorch 实现卷积神经网络来识别手写数字 MNIST 数据集。我们训练了一个包含两个卷积层和两个全连接层的模型,并通过使用 Adam 优化器和交叉熵损失函数进行优化,并在测试集上评价了模型的性能。我们的模型在测试集上取得了不错的分类准确率,证明了卷积神经网络在图像分类任务中的强大表现。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值