pytorch卷积神经网络实现手写数字识别

同上一篇全连接神经网络实现手写数字识别,此文记录了直观测试模式的代码。

import torch 
import torch.nn as nn
import torchvision
import torchvision.transforms as transforms
import cv2
from torch.autograd import Variable

# Device configuration
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')

# 设置超参数
num_epochs = 5
output_size = 10
batch_size = 100
learning_rate = 0.001

# MNIST 数据集下载
train_dataset = torchvision.datasets.MNIST(root='../../data/',
                                           train=True, 
                                           transform=transforms.ToTensor(),
                                           download=True)

test_dataset = torchvision.datasets.MNIST(root='../../data/',
                                          train=False, 
                                          transform=transforms.ToTensor())

#  数据集加载
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
                                           batch_size=batch_size, 
                                           shuffle=True)

test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
                                          batch_size=batch_size, 
                                          shuffle=False)

#2个卷积层的神经网络
class ConvNet(nn.Module):
    def __init__(self):
        super(ConvNet, self).__init__()
        self.layer1 = nn.Sequential(
            nn.Conv2d(1, 16, kernel_size=5, stride=1, padding=2),   #输入1通道,输出16通道,其实代表卷积核的个数为16
            nn.BatchNorm2d(16),                                     #输入1通道,输出16通道,其实代表卷积核的个数为16
            nn.ReLU(),                                              #激励函数处理
            nn.MaxPool2d(kernel_size=2, stride=2))                  #最大池化,降采样   2x2 步长为2
        self.layer2 = nn.Sequential(
            nn.Conv2d(16, 32, kernel_size=5, stride=1, padding=2),
            nn.BatchNorm2d(32),
            nn.ReLU(),
            nn.MaxPool2d(kernel_size=2, stride=2))
        self.fc = nn.Linear(7*7*32, output_size)
        
    def forward(self, x):
        out = self.layer1(x)
        out = self.layer2(out)
        out = out.reshape(out.size(0), -1)    #将输出7*7*32拉成一个张量,size(0),返回行数,view(行数,-1),reshape成多少行数,列数模糊控制不管。
        out = self.fc(out)
        return out

model = ConvNet().to(device)

# 损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)

#训练模型
total_step = len(train_loader)
for epoch in range(num_epochs):
    for i, (images, labels) in enumerate(train_loader):
        images = images.to(device)
        labels = labels.to(device)
        
        # 前向传播
        outputs = model(images)
        loss = criterion(outputs, labels)
        
        # 反向传播和优化
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        
        if (i+1) % 100 == 0:
            print ('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}' 
                   .format(epoch+1, num_epochs, i+1, total_step, loss.item()))

# 测试模型
model.eval()    #把模型设置成验证模式
with torch.no_grad():
    correct = 0
    total = 0
    for images, labels in test_loader:
        images = images.to(device)
        labels = labels.to(device)
        outputs = model(images)
        _, predicted = torch.max(outputs.data, 1)  ##data是一个以两个张量为元素的列表
        total += labels.size(0)
        correct += (predicted == labels).sum().item()

    print('Test Accuracy of the model on the 10000 test images: {} %'.format(100 * correct / total))

# 保存模型
torch.save(model.state_dict(), 'model.pkl')
#
X_test, y_test = next(iter(test_loader))
inputs = Variable(X_test)
pred = model(inputs)
_, pred = torch.max(pred, 1)

print("Predict Label is:", (i for i in pred))
print("Real Label is :", [i for i in y_test])

img = torchvision.utils.make_grid(X_test)
img = img.numpy().transpose(1, 2, 0)

std = [0.5, 0.5, 0.5]
mean = [0.5, 0.5, 0.5]
img = img * std + mean
cv2.imshow('win', img)
key_pressed = cv2.waitKey(0)

在这里插入图片描述

Test Accuracy of the model on the 10000 test images: 99.01 %
Predict Label is: <generator object <genexpr> at 0x000002A02B024138>
Real Label is : [tensor(7), tensor(2), tensor(1), tensor(0), tensor(4), tensor(1), tensor(4), tensor(9), tensor(5), tensor(9), tensor(0), tensor(6), tensor(9), tensor(0), tensor(1), tensor(5), tensor(9), tensor(7), tensor(3), tensor(4), tensor(9), tensor(6), tensor(6), tensor(5), tensor(4), tensor(0), tensor(7), tensor(4), tensor(0), tensor(1), tensor(3), tensor(1), tensor(3), tensor(4), tensor(7), tensor(2), tensor(7), tensor(1), tensor(2), tensor(1), tensor(1), tensor(7), tensor(4), tensor(2), tensor(3), tensor(5), tensor(1), tensor(2), tensor(4), tensor(4), tensor(6), tensor(3), tensor(5), tensor(5), tensor(6), tensor(0), tensor(4), tensor(1), tensor(9), tensor(5), tensor(7), tensor(8), tensor(9), tensor(3), tensor(7), tensor(4), tensor(6), tensor(4), tensor(3), tensor(0), tensor(7), tensor(0), tensor(2), tensor(9), tensor(1), tensor(7), tensor(3), tensor(2), tensor(9), tensor(7), tensor(7), tensor(6), tensor(2), tensor(7), tensor(8), tensor(4), tensor(7), tensor(3), tensor(6), tensor(1), tensor(3), tensor(6), tensor(9), tensor(3), tensor(1), tensor(4), tensor(1), tensor(7), tensor(6), tensor(9)]

  • 2
    点赞
  • 24
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论
以下是一个使用PyTorch实现手写数字识别卷积神经网络,其中包括多个卷积层和全连接层。 ``` import torch import torch.nn as nn import torch.optim as optim from torch.autograd import Variable from torchvision import datasets, transforms # 定义卷积神经网络模型 class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(1, 6, 5) # 输入通道数为1,输出通道数为6,卷积核大小为5*5 self.conv2 = nn.Conv2d(6, 16, 5) # 输入通道数为6,输出通道数为16,卷积核大小为5*5 self.fc1 = nn.Linear(16 * 4 * 4, 120) # 全连接层,输入大小为16*4*4,输出大小为120 self.fc2 = nn.Linear(120, 84) # 全连接层,输入大小为120,输出大小为84 self.fc3 = nn.Linear(84, 10) # 全连接层,输入大小为84,输出大小为10 def forward(self, x): x = nn.functional.relu(self.conv1(x)) # 卷积层1,使用relu激活函数 x = nn.functional.max_pool2d(x, 2) # 最大池化层,池化核大小为2*2 x = nn.functional.relu(self.conv2(x)) # 卷积层2,使用relu激活函数 x = nn.functional.max_pool2d(x, 2) # 最大池化层,池化核大小为2*2 x = x.view(-1, 16 * 4 * 4) # 展开成一维向量 x = nn.functional.relu(self.fc1(x)) # 全连接层1,使用relu激活函数 x = nn.functional.relu(self.fc2(x)) # 全连接层2,使用relu激活函数 x = self.fc3(x) # 输出层,不使用激活函数 return x # 加载数据 train_loader = torch.utils.data.DataLoader(datasets.MNIST('../data', train=True, download=True, transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ])), batch_size=64, shuffle=True) test_loader = torch.utils.data.DataLoader(datasets.MNIST('../data', train=False, transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ])), batch_size=64, shuffle=True) # 定义模型和优化器 model = Net() optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5) # 训练模型 def train(epoch): model.train() for batch_idx, (data, target) in enumerate(train_loader): data, target = Variable(data), Variable(target) optimizer.zero_grad() output = model(data) loss = nn.functional.cross_entropy(output, target) loss.backward() optimizer.step() if batch_idx % 100 == 0: print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format( epoch, batch_idx * len(data), len(train_loader.dataset), 100. * batch_idx / len(train_loader), loss.data.item())) # 测试模型 def test(): model.eval() test_loss = 0 correct = 0 for data, target in test_loader: data, target = Variable(data, volatile=True), Variable(target) output = model(data) test_loss += nn.functional.cross_entropy(output, target, size_average=False).data.item() pred = output.data.max(1, keepdim=True)[1] correct += pred.eq(target.data.view_as(pred)).cpu().sum() test_loss /= len(test_loader.dataset) print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format( test_loss, correct, len(test_loader.dataset), 100. * correct / len(test_loader.dataset))) # 运行训练和测试 for epoch in range(1, 11): train(epoch) test() ``` 在这个模型中,我们使用了两个卷积层和三个全连接层。在每个卷积层中,我们使用了多个卷积核,以增加模型的表达能力。在训练阶段,我们使用随机梯度下降(SGD)优化器,以最小化交叉熵损失函数。在测试阶段,我们计算了模型在测试集上的准确率。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

通信仿真爱好者

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值