利用GEE对CLCD土地覆盖数据重分类

内容介绍

本期内容主要是调用武汉大学30m的土地覆盖数据(CLCD),对该数据的9个土地覆盖类别进行重分类,然后输出相应年份的影像。

数据链接:
https://zenodo.org/records/8176941

本文参考:https://blog.csdn.net/uwpk123/article/details/140605484

代码

// 导入武汉市边界的矢量数据作为区域
var roi = ee.FeatureCollection("projects/ee-gorilla/assets/wuhan");  
// 将 ROI 添加到地图上,颜色为灰色  
Map.addLayer(roi, {'color': 'grey'}, 'Boundary');  
// 将地图中心设置到 ROI,并放大到 10 倍  
Map.centerObject(roi, 10);  

// 可视化原始图像的参数,显示类别 1 到 9  
var vis_CLCD = {  
    'min': 1,  
    'max': 9,  
    'palette': ['FAE39C', '446F33', '33A02C',  
        'ABD37B', '1E69B4', 'A6CEE3',  
        'CFBDA3', 'E24290', '289BE8',]  
};  

// 可视化重分类图像的参数,显示类别 1 到 6  
var vis_reCLCD = {  
    'min': 1,  
    'max': 6,  
    'palette': ['FAE39C', '446F33',  
        'ABD37B', '1E69B4','CFBDA3', 'E24290']  
};  

// 导入CLCD数据  
var srcFolder = 'projects/lulc-datase/assets/LULC_HuangXin/';  

// 初始化图像列表  
var imgList = [];  
// 遍历 2000 到 2019 年的数据  
for (var year = 2000; year <= 2020; year++) {  
    // 导入每一年的影像,并裁剪到 ROI 区域  
    var tmpImg = ee.Image(srcFolder + 'CLCD_v01_' + year)  
        .clip(roi)  
        .set('year', year); // 将年份作为影像的元数据设置  
    imgList.push(tmpImg); // 将影像添加到列表中  
}  

// 创建图像集合  
var imgCollection = ee.ImageCollection.fromImages(imgList);  
// 将第一幅图像添加到地图上进行可视化  
Map.addLayer(imgCollection.first(), vis_CLCD, "test");  

// 初始化重分类图像列表  
var reclassList = [];  
// 遍历 2000 到 2020 年的数据  
for (var year = 2000; year <= 2020; year++) {  
    // 导入每一年的影像,裁剪,并进行重分类  
    var tmpImg = ee.Image(srcFolder + 'CLCD_v01_' + year)  
        .clip(roi)  
        .remap(  
            [1, 2, 3, 4, 5, 6, 7, 8, 9], // 原始类别  
            [1, 2, 2, 3, 4, 4, 5, 6, 4]  // 重分类后的类别  
        )  
        .set('year', year); // 将年份作为影像的元数据设置  
    reclassList.push(tmpImg); // 将重分类影像添加到列表中  
}  

// 创建重分类图像集合  
var reclassimgCollection = ee.ImageCollection.fromImages(reclassList);  
// 将第一幅重分类图像添加到地图上进行可视化  
Map.addLayer(reclassimgCollection.first(), vis_reCLCD, "test");  

// 定义要导出的特定年份  
var exportYears = [2000, 2005, 2010, 2015, 2020];  

// 循环导出特定年份的重分类影像  
exportYears.forEach(function(year) {  
    // 从重分类影像集合中筛选出特定年份的影像  
    var imageToExport = reclassimgCollection.filter(ee.Filter.eq('year', year)).first();  
    
    // 检查影像是否存在  
    if (imageToExport) {  
        Export.image.toDrive({  
            image: imageToExport,  // 要导出的影像  
            description: 'Reclassified_Image_' + year, // 导出的文件描述  
            scale: 30, // 设置影像的分辨率  
            region: roi.geometry(), // 使用 ROI 作为导出区域  
            maxPixels: 1e13 // 设置最大像素数  
        });  
    }  
});
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值