python毕设:基于ResNet的植物叶片病害的分类识别系统

 本文探讨了基于深度学习的植物叶片病害识别系统的设计与实现,展现了一个完整、高效的解决方案,对于提升农产品质量和产量具有重大意义。
    本系统采取了前后端分离的架构,确保了系统的稳定性和可维护性。前端采用Vue.js框架,为用户提供了直观、友好的操作界面,包括图片上传以及识别结果显示等功能。而后端则基于Flask框架,负责接收前端请求,调用深度学习模型进行图像识别,并返回识别结果。这种分工明确的设计,使得系统各部分功能清晰,易于扩展和升级。
    本系统采用了ResNet网络结构,这是一种在图像识别领域表现优秀的深度学习模型。通过pytorch框架实现,该模型能够准确提取植物叶片图像的特征,从而实现高精度的病害识别。此外,系统还利用迁移学习技术,加载预训练权重,加速了模型的收敛速度,提高了训练效率。
    本文也详细的描述了模型的训练与测试。首先,在标注数据集上进行模型的fine-tune,通过定义交叉熵损失函数和Adam优化器,进行多轮次的训练,并在每个epoch中交替进行模型训练与验证,以确保模型的泛化能力。同时,系统还保存了最佳模型权重,以便在实际应用中调用。在测试阶段,系统对模型的分类准确率、推理速度、资源利用率等性能指标进行了全面评估,结果显示模型性能优秀,能够满足实际应用的需求。
    基于深度学习的植物叶片病害识别系统具有功能完善、性能优良、操作便捷等特点,为植物病害识别领域的研究提供了有益的参考。同时,随着技术的不断发展和优化,相信该系统在未来会有更广阔的应用前景和市场需求。

开发及运行环境

硬件平台

规格

CPU

Intel(R) Core(TM) i5-6300HQ

内存

16GB

软件平台

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值