【CVPR 2020】3D-GCN阅读

本文介绍了CVPR 2020上的一项研究,探讨了3D图卷积网络(3D-GCN)在点云分析中的创新应用,特别是学习可变形核的方法。通过对比2D CNN和3D-GCN,展示了3D-GCN在处理3D数据的优势,并详细阐述了其计算过程和分类框架,以及最大池化的实现。
摘要由CSDN通过智能技术生成

【CVPR 2020】Convolution in the Cloud: Learning Deformable Kernels in 3D Graph Convolution Networks for Point Cloud Analysis 阅读

创新点
你好! 这是你第一次使用 **Markdown编辑器** 所展示的欢迎页。如果你想学习如何使用Markdown编辑器, 可以仔细阅读这篇文章,了解一下Markdown的基本语法知识。
** 2DCNN和3D-GCN对比**
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
3D-GCN计算

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值