《Semantic Graph Convolutional Networks for 3D Human Pose Regression》论文解读
原文:Semantic Graph Convolutional Networks for 3D Human Pose Regression
收录:CVPR2019
代码:Pytorch
Abstract
- 用于3D回归的图卷积网络(GCN)的问题:目前的GCNs算法存在一些限制,即卷积滤波器感受野小以及每个节点共享变换矩阵。
为解决上面限制,本文提出 SemGCN,一种新的神经网络结构,用来处理 图结构数据 的回归任务。
其原理则是:SemGCN学会捕获语义信息,如局部和全局节点关系,这些信息不是明确表示在图中,这些语义关系可以通过GT值进行端到端训练来学习,不需要额外的监督或自定规则,最后进行全面的研究来验证SemGCN,结果表明SemGCN在使用90%的参数的情况下具有更好的性能。
1. Introduction
CNNs目前成功解决图像分类、目标检测以及生成等经典CV问题,其中输入图像是规则的网格状结构(例如size = H×W)。然而现实中的许多任务,例如分子结构、社交网络和3D网格,通常都是不规则的结构,而CNNs在这方面受限。
为解决这一限制,开始引入 图卷积网络(GCNs),但是,却有以下两个局限性,使得GCNs不能直接应用于回归问题。① 为解决图节点可能具有多个邻域的问题,卷积滤波器对所有节点共享相同的权值矩阵,CNNs则不是这样;② GCNs将滤波器限制在每个节点的一步邻域内运行,那么卷积核的感受野被限制为1,这当网络加深时会严重影响信息交换的效率。
一波未平一波又起,为解决上面所有限制,本文提出 SemGCN。在给定图中,研究学习语义信息的编码,例如局部和全局节点关系。使用SemGCN来实现2D到3D人体位姿回归。将一个2D人体姿态(或可选的相关图像)作为输入,最后预测3D关节在特定坐标空间中的位置。由于2D和3D姿势都可以用2D或3D坐标自然地表示,那么SemGCN可以显式地利用它们的空间关系。
最后本文方法的有效性通过严格**消融研究(ablation study)**的综合评估以及与当前先进方法比较来验证。在Human3.6M上测试,只使用2D关节坐标作为输入,并且使用90%的参数。与此同时,还展示了SemGCN的可视化结果,定性地证明方法的有效性。
主要贡献:
- 提出了一种改进的图卷积操作——语义图卷积(SemGConv),它来源于CNNs,其关键思想是学习图中隐含的先验边的信道加权,然后将其与核矩阵(kernel matrices)相结合。显著提高图卷积的能力;
- 引入SemGCN,其中SemGConv和非局部层交错。该体系结构捕获节点之间的本地和全局关系;
- 提出端到端的学习框架,表明SemGCN中还可以加入外部信息,如图像内容,进一步提高3D人体位姿回归的性能。
2. Related work
- Graph convolutional networks
将神经网络应用到输入为 类图结构(graph-like structures) 是深度学习一个重要课题。对于有向无环图的数据尝试使用 递归神经网络(RNN) 来解决;之后GNN被引入后,GNN则成为处理任意图数据更常见的解决方案;再之后提出GCN,该网络主要有两种主流方法:① 基于光谱的观点(spectral perspective);② 基于空间的观点(spatial perspective)。本文采用第二种方法,将卷积滤波器直接应用于图节点及其邻居节点上。
- 基于光谱的观点(spectral perspective):图卷积中的位置信息被看做是以光谱分析的形式;
- 基于空间的观点(spatial perspective):卷积核直接被应用在图节点和邻居节点上。
- 3D pose estimation
Lee和Chen等人首先从相应的2D投影来推断3D关节。后来的方法要么利用最近邻来精炼推断的位姿,要么提取hand-craft特征来进行后期回归。利用深度神经网络寻找2D到3D关节位置映射的研究越来越多。有些是直接从图像中预测3D位姿,还有一些3D姿态回归方法要么将2D热图与体积表示相结合,要么估计成对距离矩阵或者图像线索。
3. Semantic Graph Convolutional Networks
3.1. ResGCN: A Baseline
notation | meaning |
---|---|
G | {V, E} |
V | K个节点 |
K | 总节点数 |
E | 边 |
i i i | 第 i i i 个节点 |
j ∈ N ( i ) j\in N(i) j∈N(i) | 第 i i i 个节点的第 j j j 个邻节点 |
x i ⃗ ( l ) ∈ R D l \vec{x_{i}}^{(l)}\in R^{D_{l}} xi(l)∈RDl | 节点 i i i 第 l l l 次卷积之前的表示 |
x i ⃗ ( l + 1 ) ∈ R D l + 1 \vec{x_{i}}^{(l+1)}\in R^{D_{l+1}} xi(l+1)∈RDl+1 | 节点 i i i 第 l l l 次卷积之后的表示 |
X ( l ) ∈ R D l × K X^{(l)}\in R^{D_{l}\times K} X(l)∈RDl×K | 总节点矩阵 |
W ∈ R D l + 1 × D l W\in R^{D_{l+1}\times D_{l}} W∈RDl+1×Dl | 参数矩阵 |
A ~ \tilde{A} A~ | 邻接矩阵A的对称标准化 |
Wang等人利用残差连接(residual connections)对基于等式(1)的深度图网络 (deep graph network)进行重新修改,来学习图像特征与3D顶点之间的映射,本文将ResGCN作为基准网络(baseline)。
等式(1)有两大缺点。首先,为了在任意拓扑结构的节点上运用卷积,必须对所有边共享核矩阵W,相邻节点或图中的内部结构的关系没有得到很好的利用。其次,以前的工作只收集每个节点的一阶邻居的特性,这使得感受野被固定为1。
3.2. Semantic Graph Convolutions
- M:可学的加权矩阵, M ∈ R K × K M\in R^{K\times K} M∈RK×K;
- ρ i \rho_{i} ρi:Softmax非线性;
- ⊙ \odot ⊙:逻辑同或运算, ⊕ \oplus ⊕则是异或。
如Fig.1(d)所示,还可以对等式2进一步扩展:
- M d ∈ R K × K M_{d}\in R^{K\times K} Md∈RK×K :第d通道的权值矩阵 (如Fig.1(d):对输出节点的每个通道d采用不同的权值矩阵);
- w ⃗ d \vec{w} _{d} wd:变换矩阵W的第d行。
- ∥ \parallel ∥:通道串联
3.3. Network Architecture
- W x W_{x} Wx:初始化为0;
- f ( x i , x j ) f(x_{i},x_{j}) f(xi,xj):计算节点 i i i 和周边节点 j j j 的affinity(关系密切程度);
实际上,对于等式(4)可以通过 非局部层 (non-local layers) 来实现;基于等式(3)和(4),本文提出新的网络结构用于回归任务——SemGCN,网络中的SemGConv和非局部层交错来捕获节点之间的局部和全局语义关系,如图2所示:
上图在网络开始时,先使用一个SemGConv将输入映射到潜在空间(latent space);网络最后还有一个附加的SemGConv,用于将编码后的特性投影回输出空间。注意:若将SemGConv替换为vanilla graph convolutions,并且所有非局部层都删除,那么SemGCN变为ResGCN。
4. 3D Human Pose Regression
在一个预定义的摄像机坐标系统中,目的是学习一个回归函数
F
∗
F^{*}
F∗,使得在内含N个人体姿态的数据集上的损失最小化。
- P ∈ R K × 2 P\in R^{K\times 2} P∈RK×2:2D关节点;
- J ∈ R K × 3 J\in R^{K\times 3} J∈RK×3:相对应的3D关节点
本文认为图像内容能够为解决模棱两可的情况提供重要的线索,因此,再将图像内容作为附加约束进一步扩展等式(5),如下式:
- I i I_{i} Ii:为包含2D关节 P i P_{i} Pi 对齐后的人体姿态图像。在实际中,已知摄像机参数或者通过2D关节检测器,P可以作为2D GT值。
整个框架如图3所示:由两个神经网络组成。先输入一幅图像,利用深度卷积网络进行2D关节预测;同时,它也是一个骨干网,从它的中间层汇集图像特征。由于2D和3D的关节坐标可以编码到人体骨骼中,因此提出的SemGCN根据2D姿态和感知特征来预测3D坐标,注意,当不考虑图像特性时,我们的框架采用等式(5),SemGCN用于有效地编码从2D到3D姿态的映射,并且在合并图像内容时性能可以进一步提高。
4.1. Perceptual Feature Pooling
ResNet 和 Hourglass 广泛应用在传统的人体位姿检测中,本文采用 ResNet 作为骨干网络( backbone ),因为它的中间层提供图像的层次特征,这在CV中,如目标检测和分割中很有用。给定输入图像中每个2D关节的坐标,在ResNet中汇集来自多个层次的特征,特别是,通过使用RoIAlign将从conv_1层提取的特征连接到conv_4层。然后将感知特性与2D坐标连接起来,并输入到SemGCN中。注意:由于输入图像中的所有关节具有相同的尺度,因此我们将特征集中在一个以每个关节为中心、大小固定的方形边界盒中,边长大小即骨骼的平均骨骼长度。
4.2. Loss Function
- J = { J ~ i ∣ i = 1 , ⋯ , K } J=\{\tilde{J}_{i}|\ i=1,\cdots ,K\} J={J~i∣ i=1,⋯,K}:预测的3D关节坐标;
- B = { B ~ i ∣ i = 1 , ⋯ , M } B=\{\tilde{B}_{i}|\ i=1,\cdots ,M\} B={B~i∣ i=1,⋯,M}:从 J J J中计算得到的bones;
- J i J_{i} Ji、 B i B_{i} Bi:相应的GT值。