注:(整理于2022年3月,素材来自各大生信企业的公开招聘信息、取并集、有筛选)
一、生信分析类岗位
1、职责
- 多组学数据分析和可视化
- 针对具体数据撰写分析脚本
- 协助搭建并维护数据分析流程
- 与具体方向(例如单细胞、数据库)结合
- 负责研发项目的信息分析、背景调研、方案设计与撰写
- 辅助写论文、写基金
- 分析报告的撰写和生物意义解读
2、任职资格
- 硕士及以上(极少数本科即可),有多组学分析、生信流程搭建(snakemake、wdl等)、软件开发经验者优先
- 熟悉高通量测序数据分析原理、流程、各种工具的应用及核心算法(不都要求算法)
- R语言绘图能力
- 熟悉Linux(能够熟练编写shell脚本)、熟悉常用生信分析软件、精通至少一门(有的岗位要求2门)编程语言(不同岗位要求不一样,但一般都有python):java、python、c、c++、perl、R
- 熟悉生物信息各大数据库
- 英文表达和读写能力
- 文献调研能力
- 逻辑思维、学习能力、协调沟通能力、抗压能力
- 熟悉高性能计算集群环境(少数岗位有此要求)
- 与具体方向结合(例如数据库相关岗位要求熟悉html等)
- 第一作者发表论文者优先(较少岗位有此要求)
二、生信算法研发/软件开发类岗位
1、职责
- 针对新数据(一般是组学数据)、新需求,开发新型算法工具以支撑数据分析
- 评估各类组学数据相关的可行算法、包括统计和机器学习方法
- 优化已有算法或分析流程的性能
- 撰写生信算法、软件等方法学文章
2、任职资格
- 熟悉机器学习与数据挖掘常用算法、良好的数理统计基础
- 硕士及以上(部分岗位要求博士)
- 熟悉linux,掌握R、python、C\C++、C#、java、JS编程语言中的一种或多种
- 表达和沟通能力、逻辑思维、学习能力
- 熟悉数据结构与算法
- 熟悉基因组测序技术和相关分析方法,熟悉常规的生物信息学分析流程
- 掌握数据库(MySQL\Redis\mongodb)(部分岗位要求)
三、生物学+深度学习/数据挖掘/机器学习类岗位
1、职责
- 跟踪学术进展、提供创新想法和技术支持
- 基于深度学习的方法开发、人工智能算法开发(针对深度学习类岗位)
- 开发项目相关辅助软件
- 结合具体方向(例如结构预测、实验图像数据挖掘)有具体要求
- 将统计机器学习、NLIP、CV前沿方法引入生物领域
2、任职资格
- 硕士及以上(部分岗位要求博士)
- 精通至少一门(有的要求2门)编程语言(C、C++、PYTHON、MATLAB、JAVA、R)
- 机器学习和统计分析经验,概率论、数理统计基础
- 与具体方向结合(一般都要求熟悉业界前沿的研究模型(例如CV的要求R-CNN等;NLP要求transformer等))
- 掌握tensorflow和pytorch、caffe(少见),有深度学习项目和部署经验 (针对深度学习类)
- 学习能力、论文检索能力、快速实现转化技术原型
- 沟通能力和团队协作能力
- 熟悉二代测序数据、理论和算法等;有的要求熟悉单细胞流程和算法(根据具体岗位的不同有差异)
- 熟悉深度学习理论(各种经典网络)
- 熟悉知识表示、少样本学习等(部分岗位要求)
- 项目开发经验
- 熟悉生信数据库
- kaggle、kdd、cvpr等比赛获奖 or 一作高水平论文/顶会 优先 (部分岗位有此要求)