机器学习---数学基础加强(2)概率与统计

常见的概率分布

分布公式期望方差
二项分布 f ( X = k ) = n ! k ! ( n − k ! ) p k ( 1 − p ) n − k f(X = k) = \frac{{n!}}{{k!(n - k!)}}{p^k}{(1 - p)^{n - k}} f(X=k)=k!(nk!)n!pk(1p)nknpnp(1-p)
高斯分布 f ( X ) = 1 2 π exp ⁡ ( − ( x − μ ) 2 2 σ 2 ) f(X) = \frac{1}{{\sqrt {2\pi } }}\exp \left( { - \frac{{{{\left( {x - \mu } \right)}^2}}}{{2{\sigma ^2}}}} \right) f(X)=2π 1exp(2σ2(xμ)2)μ σ 2 {\sigma ^2} σ2
泊松分布 P ( X = k ) = ∑ k = 0 ∞ λ k k ! e − λ P\left( {X = k} \right) = \sum\limits_{k = 0}^\infty {\frac{{{\lambda ^k}}}{{k!}}{e^{ - \lambda }}} P(X=k)=k=0k!λkeλ λ \lambda λ λ \lambda λ
均匀分布 P ( X ) = 1 a + b P\left( X \right) = \frac{1}{{a + b}} P(X)=a+b1 a + b 2 \frac{{a + b}}{2} 2a+b ( b − a ) 2 12 \frac{{{{\left( {b - a} \right)}^2}}}{{12}} 12(ba)2
指数分布 f ( x ) = { λ e − λ 0 , x ≥ 0 , x ≤ 0 f\left(x\right)=\left\{\begin{array}{l}\lambda e^{-\lambda}\\0\end{array}\right.\begin{array}{c},x\geq0\\,x\leq0\end{array} f(x)={λeλ0,x0,x0 λ \lambda λ λ \lambda λ

Beta分布

beta分布可以看做是观察一系列的二项分布的分布,我们可以用实际检验的分布数据来进行分布的统计,从这个分布中我们可以计算出所有概率出现的可能性大小,所以也叫做概率的概率分布。
其分布的概率密度公式为:
f ( p ; α , β ) = p α − 1 ( 1 − p ) β − 1 ∫ 0 1 μ α − 1 ( 1 − μ ) β − 1 d μ = Γ ( α + β ) Γ ( α ) Γ ( β ) x α − 1 ( 1 − x ) β − 1 f(p;\alpha,\beta)=\frac{p^{\alpha-1}\left(1-p\right)^{\beta-1}}{\displaystyle\int_0^1\mu^{\alpha-1}\left(1-\mu\right)^{\beta-1}d\mu}=\frac{\Gamma\left(\alpha+\beta\right)}{\Gamma\left(\alpha\right)\Gamma\left(\beta\right)}x^{\alpha-1}\left(1-x\right)^{\beta-1} f(p;α,β)=01μα1(1μ)β1dμpα1(1p)β1=Γ(α)Γ(β)Γ(α+β)xα1(1x)β1
从第一个等式的积分项可以看出其是对二项分布各种概率的积分。

指数族分布

对于一些分布我们可以将其转化为指数族分布的形式进行表示。
指数族分布的表达式( η \eta η为一个参数)
P ( x ; η ) = h ( x ) e η T ( x ) − A ( η ) P(x;\eta)=h(x)e^{\eta T(x)-A(\eta)} P(x;η)=h(x)eηT(x)A(η)
其中h(x)为底层观测值
T(x)为充分统计量
A( η \eta η)为对数规则化

协方差

协方差表示的是两个随机变量是否具有相同方向变化趋势的变量。
协方差的公式为:
c o v ( X , Y ) = E ( X Y ) − E ( X ) E ( Y ) \mathrm{cov}\left(X,Y\right)=E\left(XY\right)-E\left(X\right)E\left(Y\right) cov(X,Y)=E(XY)E(X)E(Y)
协方差与独立之间有两个关系:
协方差为0表示这两个变量不相关,即两个变量的线性独立,但是无法推出两个变量独立。
而两个变量独立可以推出两个变量协方差为0

协方差矩阵

当存在多个变量时,协方差矩阵表示两两变量之间的协方差组成的矩阵,协方差矩阵为对称矩阵。

切比雪夫不等式

切比雪夫不等式表示在已知期望以及方差后,变量落在各个区间内的概率
P { ∣ x − μ ∣ ≥ ε } ≤ σ 2 ε 2 P\text{\{}\left|x-\mu\right|\geq\varepsilon\text{\}}\leq\frac{\sigma^2}{\varepsilon^2} P{xμε}ε2σ2
X变量的方差越小,事件 { ∣ x − μ ∣ < ε } \left\{\left|x-\mu\right|<\varepsilon\right\} {xμ<ε}发生的概率越小。

大数定律

针对与随机变量X1,X2,…Xn互相独立,且具有相同期望和方差。
lim ⁡ n → ∞ { ∣ Y n − μ ∣ < ε } = 1 \lim_{\text{n}\rightarrow\infty}\left\{\left|Y_n-\mu\right|<\varepsilon\right\}=1 nlim{Ynμ<ε}=1

中心极限定理

X1,X2,…Xn互相独立且具有相同的期望则其可以收敛到标准正态分布。
Y n = ∑ i = 1 n X i − n μ n σ Y_n=\frac{\displaystyle\sum_{i=1}^nX_i-n\mu}{\sqrt n\sigma} Yn=n σi=1nXinμ

最大似然估计

利用已知信息反推出最有可能导致样本结果出现的模型参数值。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值