不是Oculus在主导虚拟现实市场?那是谁?

最近威恩在跳蚤市场淘了一个Oculus Rift DK2,价格就不说了,别被喷…到手体验还凑合,但是要想玩家好好的玩耍,还差点距离。

分辨率太低,1080p的屏幕,颗粒感很强,零售版最起码要2k才行
线也有点多,期待零售版能改成无线的方式
还有最最重要的问题,容易眩晕。这个跟每个人的体制也有关系,我有朋友玩一会儿就不行了,要缓好久。有的人则能玩好几个小时。
游戏现在兼容的也不是很多,但未来肯定会流行起来的。

        到现在知道的有Oculus, Sony, Valve, Samsung和HTC都在研发VR设备(暂且不提国产的),这预示着新的游戏操作方式的到来,在不久肯定会颠覆游戏界!(我不是一个预言者),但是,最最重要的是!unity引擎可用于在所有这些设备上开发游戏。这又代表什么呢?可想而知了。


    John Riccitiello :VR 行业,Unity 将会成为核心

        “到现在,至少有90%的VRdemo和产品是用Unity引擎研发的,这里,就能很明确的看到Unity在VR市场中的地位,”John Riccitiello 说:“这些功能超级强悍的头戴设备会让你对VR的体验更加真实。假如你去看看Valve     或许Oculus 、Microsoft HoloLens的Demo, 你会被震撼到。我们正见证着一个潜力无限、正在兴起的行业,而它的中心,则很有可能是Unity引擎。虚拟现实(VR)以及增强现实(AR)会在未来4到5年里推翻我们过去的娱乐方式。”

        Riccitiello 从1997年起就在电子游戏行业,他曾是Electronic Arts 的首席运营官。EA 就是在他的帮助下成了世界上最大的游戏发行商。他在2014年10月参加Unity 。在一次与《财富》杂志的采访中表示,他这20年的调查发现,VR 已经在众多游戏领域的立异中锋芒毕露。

        “触屏游戏能够从刚开始的2千万用户增长为超过20亿的用户,是因为它极大降低了游戏的复杂性,使得每个人都能上手玩游戏。而VR 所做的是将大家进入我们游戏开发者的世界。如今凭借强大的工具所实现的酷炫体验仅仅只是这场改革的开始。这将会是无与伦比的全新体会,无论是移动端和其他平台上。”


符国新:Unity ,游戏开发者的打印机

        引擎是什么?引擎是游戏的根基。十年前,游戏引擎是每个游戏公司必有的,几乎没有个公司都会有属于自己的一套引擎,游戏引擎技术很复杂并且难以驾御。可是到移动互联网年代,对于移动游戏的小团队的崛起,Unity 等简略易用且收费低的游戏引擎得以扩展到更广泛的受众群。

       这两年的App Store 排名前十的游戏,会发现都是使用Unity引擎开发的,比如《神庙逃亡》、《炉石传说》、《纪念碑谷》、《天龙八部3D》、《我叫MT 2》、《Hello Hero》、《王者之剑》、《天天飞车》等等,并且这些都是 AAA 级游戏!

        Unity 最大的魅力在于能够一键发布到任何平台,有21个之多!Unity的开发者能够将手游直接移植到虚拟现实设备上去。在这之前,ifanr采访Unity 大中华区总裁符国新(Allen Foo)时,他就把 Untiy 描述为“游戏开发者的打印机”——在不相同平台开发游戏,就如同一份文档挑选不相同的打印机打印相同便利。

        而在2015年,Unity宣布了一个对所有刚刚成立的工作室和公司,尤其是个人开发者很兴奋的事情,“注册资金或收益少于10万美元的游戏工作室和独立游戏开发者讲免费使用Unity 5的基本功能”。对于这个条件之外的用户,只会收取每月75美元或者1500美元永久的使用权。价格低廉,将会使得不断增加的游戏和非游戏开发者运用Unity 引擎来研发产品。

让我们期待Unity让更多开发者能够创造梦想,成就非凡!

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
目标检测(Object Detection)是计算机视觉领域的一个核心问题,其主要任务是找出图像中所有感兴趣的目标(物体),并确定它们的类别和位置。以下是对目标检测的详细阐述: 一、基本概念 目标检测的任务是解决“在哪里?是什么?”的问题,即定位出图像中目标的位置并识别出目标的类别。由于各类物体具有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具挑战性的任务之一。 二、核心问题 目标检测涉及以下几个核心问题: 分类问题:判断图像中的目标属于哪个类别。 定位问题:确定目标在图像中的具体位置。 大小问题:目标可能具有不同的大小。 形状问题:目标可能具有不同的形状。 三、算法分类 基于深度学习的目标检测算法主要分为两大类: Two-stage算法:先进行区域生成(Region Proposal),生成有可能包含待检物体的预选框(Region Proposal),再通过卷积神经网络进行样本分类。常见的Two-stage算法包括R-CNN、Fast R-CNN、Faster R-CNN等。 One-stage算法:不用生成区域提议,直接在网络中提取特征来预测物体分类和位置。常见的One-stage算法包括YOLO系列(YOLOv1、YOLOv2、YOLOv3、YOLOv4、YOLOv5等)、SSD和RetinaNet等。 四、算法原理 以YOLO系列为例,YOLO将目标检测视为回归问题,将输入图像一次性划分为多个区域,直接在输出层预测边界框和类别概率。YOLO采用卷积网络来提取特征,使用全连接层来得到预测值。其网络结构通常包含多个卷积层和全连接层,通过卷积层提取图像特征,通过全连接层输出预测结果。 五、应用领域 目标检测技术已经广泛应用于各个领域,为人们的生活带来了极大的便利。以下是一些主要的应用领域: 安全监控:在商场、银行
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小狼是个小程序

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值