题目链接:点击打开链接
题意:
给出常数n, m个数的集合。
问:
[0, n-1] 中有多少个数 是集合中 某个数的倍数。
思路:
求的是有多少个数至少被集合中一个数整除=能被集合中一个数整除-被2个整除+被3个整除···
#include <stdio.h>
#include <iostream>
#include <algorithm>
#include <sstream>
#include <stdlib.h>
#include <string.h>
#include <limits.h>
#include <vector>
#include <string>
#include <time.h>
#include <math.h>
#include <queue>
#include <stack>
#include <set>
#include <map>
const int inf = 1e8;
const double eps = 1e-8;
const double pi = acos(-1.0);
template <class T>
inline bool rd(T &ret) {
char c; int sgn;
if(c=getchar(),c==EOF) return 0;
while(c!='-'&&(c<'0'||c>'9')) c=getchar();
sgn=(c=='-')?-1:1;
ret=(c=='-')?0:(c-'0');
while(c=getchar(),c>='0'&&c<='9') ret=ret*10+(c-'0');
ret*=sgn;
return 1;
}
template <class T>
inline void pt(T x) {
if (x <0) { putchar('-');x = -x; }
if(x>9) pt(x/10);
putchar(x%10+'0');
}
using namespace std;
typedef long long ll;
typedef pair<int,int> pii;
const int N = 3e5+10;
int gcd(int x, int y){
if(x > y)swap(x, y);
while(x){
y%=x;
swap(x, y);
}
return y;
}
int lcm(int x, int y){
return x/gcd(x, y) * y;
}
int n, m;
int a[N];
int ans;
vector<int>G[11];
void dfs(int x){
if(x == m+1)return ;
for(int i = 0; i < G[x].size(); i++)
{
int now = 1;
for(int j = 0; j < m; j++)
if(G[x][i]&(1<<j)) now = lcm(now, a[j]);
now = n/now;
if(x&1)ans += now;
else ans -= now;
// printf("%d:(%d,%d) %d\n",G[x][i], x, ans, now);
}
dfs(x+1);
}
int main(){
while(cin>>n>>m){
n--;
for(int i = 0; i < m; i++){
rd(a[i]);
if(!a[i])i--,m--;
}
if(!m){puts("0");continue;}
for(int i = 0; i <= m; i++)G[i].clear();
for(int i = 0; i < (1<<m); i++){
int cnt = 0, siz = i;
while(siz){
cnt++; siz &= siz-1;
}
G[cnt].push_back(i);
}
ans = 0;
dfs(1);
pt(ans); puts("");
}
return 0;
}