【未完成】常微分实验3.3:解 & 连续的初值 & 可微性定理

日常回顾

回顾我们之前所学,我们已经知道了如果对于一个待解的微分方程一个初值点,且在这个初值点的附近有利普希茨条件成立的话,那么在这个初值点的附近的内部(注意是附近的内部,附近的内部,初值点附近的内部,具体是多内部得是情况而定)就有这个微分方程的解存在且唯一这个性质,在证明这个定理的时候用到了逐步逼近法,逐步逼近法同时也是使用计算机求解微分方程的重要方法之一。

接着我们开始对解的存在唯一性的范围进行了一个探索,我们想把解的存在唯一性给扩大出去,而不仅仅是在初值点的附近的内部,所以我们发现了一个比满足利普希茨条件牛逼那么一点点的条件,我们叫他局部利普希茨条件,也就是在一个较大的区域G上函数连续,而在这个G内,函数满足利普希茨条件。经过科学家的研究呢,我们发现,在满足利普希茨条件的地方都可以拓展,但是我们同时也注意到,具体是从哪里拓展到哪里有定义是取决于具体的解的,即第一类间断点和第二类间断点会强行中断积分曲线的拓展。


实验目标:

回顾好了,我们来看一看我们这次准备的实验吧。

假设函数 P(x)Q(x)[α,β]y=φ(x,x0,y0)

dydx=P(x)y+Q(x)

y0=φ(x0,x0,y0),φx0,φy0φx ,并从解的表达式出发,利用对参数求导的方法,检验所得结果。

妈蛋,看得大家一脸懵13有没有,我自己都写得一头雾水,受不了,有难度吧

接下来,让我们来准备一下搞定这个实验所需要的工具。

材料准备:

+_+因为确实,这材料给得连我自己也不知道是怎么个实现思路,所以我们还是一点一点来看吧。

很久之前我们解微分方程,通解通常是会有一个(或者多个)常数项c的大家应该知道吧,但我们在解决初值问题的时候,因为初值点可以帮我们确定c的取值从而确定得到了一条积分曲线,所以,我们可以将最后的积分曲线看做是含有 x,x0,y0 三个变量的函数。我们把这种想法用公式表达就是:

y=φ(x,x0,y0)(1)

且这个函数满足我们的初值条件 y0=φ(x0,x0,y0)

有了这样一个思想作为基础之后,我们想一想,那么只要最后得到的积分曲线保持不变,那么其中究竟是哪个点是初值点这个问题还重要吗?我们随便取其中一个点作为初值点,那么这条曲线自然随之就确定了呀。这段话有些不容易解释,我们来看看下面这个表达式:

y0=φ(x0,x,y)(2)

这样的表达式是什么意思,也就是不管你初值点选做是什么,我只要最后确定的这个积分曲线当我输入 x0 的时候它能够输出 y0 我就满足了,那么,这个和我们之前告诉初值点,然后输出积分曲线(即公式(1)的哪种方式)所确定的积分曲线是一样的。艾玛,这个东西,不是很显然吗?。。。我就不给出严谨的证明了,说到底其本质都是给了一个初值点嘛,只不过说的方式不同而已。这个性质,或者说这个想法呢,我们把它叫做 解关于初值的对称性

接下来材料中所给关于解对初值的连续依赖性这些的什么鬼我就不清楚了。。。好像听说老师也只不过是直接说了结论?那这部分让我们改日再谈吧。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值