非线性控制基础(1)——Lipschitz条件

本文记录了作者自学非线性控制理论的学习过程,探讨了系统的状态方程、输出方程以及Lipschitz条件在保证系统解的存在性和唯一性中的重要性。通过实例分析了单摆和单关节机械臂的系统,展示了如何判断函数的局部或全局Lipschitz性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

#本系列文章为笔者自学非线性控制理论的学习记录,如有不正之处欢迎指正

#参考书籍《非线性控制》Hassan K. Khalil

1.非线性模型

系统的状态方程为:

\dot{x}=f(t,x,u)

  式中,x为系统的状态变量,用来表示动态系统对于之前行为的一种记忆,u为输入变量。

系统的输出方程为:

y=h(t,x,u)

  式中,y为系统的输出变量,即可以物理测量到的信息或者用来刻画一些具体特征的变量。上述两式一起称为系统的状态空间模型。

对于线性系统而言,状态模型可以表述为:

\dot{x}=A(t)x+B(t)u\\ y=C(t)x+D(t)u

  若系统已经指定了输入u=\gamma (t),或采用了状态反馈u=\gamma (x)u=\gamma (t,x),则系统的状态方程将演变为下式所示的无控制系统的形式:

\dot{x}=f(t,x)

2.Lipschitz条件

  对上述无控制系统的状态方程,通常要求在讨论的范围内f(t,x)是关于t分段连续的,而关于x是局部Lipschitz的。首先阐述要求函数f关于时间分段连续的原因:f(t,x)依赖于输入量u(t),而它可能会随着时间阶跃型改变。下面具体阐述Lipschitz条件。

2.1Lipschitz条件定义

  对于一个给定的t\in J\subset R,称f(t,x)在点x0附近关于x是局部Lipschitz的,即存在x0的一个邻域N(x0,r)和正常数L,使得f(t,x)对一切t\in Jx,y\in N均满足下面的Lipschitz条件:

\left \| f(t,x)-f(t,y) \right \| \leq L\left \| x-y \right \|

其中,范数定义为2-范数。

  称函数f(t,x)在其定义域

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值