开源模型应用落地-qwen模型小试-Qwen3-8B-推理加速-vLLM-结构化输出(三)

一、前言

   在人工智能技术迅猛发展的今天,高效推理框架与强大语言模型的结合正不断突破应用边界。vLLM作为新一代高性能推理引擎,凭借其创新的PagedAttention技术和内存优化能力,为大规模语言模型部署提供了全新可能。

    本文将聚焦vLLM框架与QWen3-8B这一国产开源大模型的深度集成,探索如何通过精心设计的提示词工程输出控制,实现稳定可靠的结构化JSON输出。这种技术组合不仅显著提升了模型推理效率,更通过标准化数据格式打通了与大语言模型应用生态的关键接口,为智能客服、数据分析等场景提供了端到端的解决方案。我们将从实践角度剖析这一技术融合的实现路径与优化策略。

    

    前置文章:

    

评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

开源技术探险家

以微薄之力温暖这个世界

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值