用vllm/SGLang部署专属你的Qwen3大模型【附实战代码】

1.引言

随着大语言模型(LLM)的飞速发展,多轮对话场景对推理性能提出了更高要求,内存占用和延迟成为关键瓶颈。2025 年4月新发布的 Qwen3 模型,以其高效的架构和优化的参数设计,为轻量级高性能推理提供了新机遇。结合 SGLang 和 vLLM 两大高效推理框架,Qwen3 可充分发挥存储优化技术(如 KV 缓存压缩和 PagedAttention)的优势。本博客将分享一次基于 Qwen3 的多轮对话实验,探索 SGLang 和 vLLM 的低延迟和高吞吐量表现,揭示存储优化的技术魅力,并为未来更大规模模型的测试铺路。
未来会测试一下Qwen3的Function Calling功能,小伙伴们可以关注一下~

2.vllm概述

vLLM 是一个高效的开源大语言模型(LLM)推理框架,旨在优化内存使用和推理速度,特别适合高并发和长序列任务,如多轮对话。vLLM 通过创新的存储管理和调度技术,显著提升了 GPU 利用率和推理性能,成为 SGLang 等框架的补充工具。

2.1 核心技术

  1. PagedAttention:
  • vLLM 引入 PagedAttention 机制,将 KV 缓存(Key-Value cache)分块存储,类似操作系统的分页内存管理。
  • 动态分配和释放内存块,减少内存碎片,支持长上下文和高并发场景(如本次实验的 parallel=64)。
  • 优势:降低多轮对话中的内存占用,确保低延迟推理。
  1. 连续批处理(Continuous Batching):
  • vLLM 动态调整批次中的请求,最大化 GPU 利用率,减少空闲时间。
  • 在高负载场景下(如 20 组对话,每组 4 轮),通过请求合并和优先级调度保持高吞吐量。
  1. 量化支持:
  • 支持 4-bit 和 8-bit 整数量化(INT4/INT8),降低模型权重和激活值的存储需求。
  • 对于中小型模型(如 Qwen/Qwen3-0.6B-Base),量化可进一步减少显存占用。
  1. 分布式推理:
  • 支持张量并行和流水线并行,优化多 GPU 场景的性能。
  • 在单 GPU 环境中,vLLM 通过高效内存分配保持性能优势。

3. SGLang概述

SGLang 是一个高效的深度学习框架,专注于大规模语言模型的训练和推理。该框架集成了先进的硬件加速技术,如 NVIDIA GPU 加速,并使用高效的 CUDA 编程模型来优化计算性能。SGLang 主要针对自然语言处理(NLP)任务,能够在多个设备和大规模数据集上进行高效计算。

3.1 主要特点

  • 高性能:SGLang 利用了 CUDA 和多 GPU 并行化技术,使得训练和推理过程能够高效地在大型数据集上进行。
  • 模块化设计:框架采用模块化设计,支持灵活配置和扩展。用户可以根据需要自定义不同的模块,以适应不同的应用场景。
  • 支持大规模模型:SGLang 支持训练和推理数十亿参数的模型,能够处理复杂的语言生成任务。
  • 跨平台支持:支持在多个平台(如 Windows、Linux 和 macOS)上运行,兼容性强。
  • 集成前沿技术:SGLang 集成了多种先进的技术,包括基于 Triton 和 FlashInfer 的推理加速技术,以及优化的内存管理方案,能够最大化 GPU 的计算能力。

3.2 主要功能

  • 训练功能:支持大规模语言模型的训练,提供高效的分布式训练能力,支持多 GPU 设置。
  • 推理功能:提供高效的推理能力,支持在低延迟环境中实时生成文本。
  • 多模态支持:支持图像、文本等多模态数据的处理,适用于多种应用场景。
  • 可扩展性:框架具有良好的可扩展性,用户可以根据需求扩展新的模型或功能模块。

3.3 使用场景

SGLang 适用于以下场景:

  1. 自然语言生成:例如,自动生成新闻报道、文章摘要等。
  2. 文本生成与推理:在聊天机器人、智能助手等应用中实现自动化的文本推理与生成。
  3. 机器翻译:支持大规模机器翻译模型的训练和部署。
  4. 多模态任务:结合图像、文本等多模态信息进行综合推理,适用于图像标注、视频理解等领域。

4. Qwen3模型下载到本地的两种方法

  1. 通过huggingface
#(以Qwen3-0.6B-FP8 为例)
huggingface-cli download --resume-download Qwen/Qwen3-0.6B-FP8 --local-dir /root/qwen3/Qwen3-0.6B-FP8
  1. 通过modelscope
# 下载完整模型库(以Qwen3-0.6B-FP8 为例)
modelscope download --model Qw
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值