如果觉得这篇文章对您有帮助,别忘了点赞、分享或关注哦!您的一点小小支持,不仅能帮助更多人找到有价值的内容,还能鼓励我持续分享更多精彩的技术文章。感谢您的支持,让我们一起在技术的世界中不断进步!
Spark运行模式
1. Standalone模式
- 描述:Standalone模式是Spark的独立集群模式,Spark自己管理资源和调度任务。适合小型集群或个人开发环境。
- 特点:
- 简单易用,适合开发和测试。
- 不依赖外部资源管理器。
- 可以运行在单机或多机集群上。
2. YARN模式
- 描述:YARN(Yet Another Resource Negotiator)是Hadoop的资源管理器,Spark可以运行在YARN集群上,使用Hadoop的资源管理功能。
- 特点:
- 适合Hadoop生态系统中的Spark应用。
- Spark作业可以和其他Hadoop作业共享集群资源。
- 支持动态资源调度。
3. Mesos模式
- 描述:Mesos是一个开源的集群管理器,支持多种类型的工作负载,Spark可以作为Mesos的一个框架运行。
- 特点:
- 支持多种不同的作业类型,Spark作业可以与其他类型的任务共享Mesos集群资源。
- 提供精细的资源隔离和调度功能。
4. Local模式
- 描述:Local模式是Spark的单机模式,用于在本地机器上运行Spark应用程序,适合开发和测试。
- 特点:
- 仅在单个机器上运行,不涉及集群。
- 适合开发阶段和小规模测试,方便调试。
Spark on Yarn
在Spark on YARN模式中,Spark应用程序通过YARN资源管理器来管理集群资源。YARN提供了以下两种主要的运行模式:
1. Client模式(Client Mode)
在Client模式下,Driver运行在提交作业的客户端机器上,而Executor则运行在YARN集群的各个节点上。
- Driver:运行在客户端(即提交作业的机器)上,客户端负责启动应用程序的
main
函数,并保持与YARN集群的连接。客户端通过YARN
ResourceManager与集群进行通信,负责分配和监控任务。- Executor:运行在YARN集群中的各个工作节点上,每个Executor负责执行分配的任务,并将计算结果返回给Driver。
特点:
- 适用场景:适合开发和调试时使用,因为Driver运行在本地,开发者可以方便地调试和查看日志。
- 资源管理:虽然Executor在YARN集群上运行,但Driver的资源是由客户端管理的,所有的交互和调度都由客户端发起。
- 网络连接要求:需要客户端与YARN集群之间有良好的网络连接,尤其是当Driver在远程机器上运行时,客户端必须能够访问集群。
启动方式:
spark-submit --master yarn --deploy-mode client --class <main-class> <your-spark-application>
2. Cluster模式(Cluster Mode)
在Cluster模式下,Driver会被调度到YARN集群中的一个节点上运行,而不是在客户端运行。
- Driver:在YARN集群内的一个工作节点上启动,YARN ResourceManager负责为Driver分配资源并启动它。Driver的启动不依赖于客户端,完全由YARN集群管理。
- Executor:和Client模式一样,Executor运行在YARN集群中的各个工作节点上,每个Executor负责执行分配的任务。
特点:
- 适用场景:适用于生产环境,特别是当Spark作业需要长期运行或需要集群资源时。因为Driver运行在集群中,作业提交和执行可以在完全分布式的环境下进行。
- 资源管理:Driver的资源由YARN集群管理,集群资源的调度和分配更加高效,适合大规模的数据处理。
- 网络连接要求:由于Driver运行在YARN集群中,客户端和集群之间的网络连接不需要持久化连接,客户端仅负责提交作业。
启动方式:
spark-submit --master yarn --deploy-mode cluster --class <main-class> <your-spark-application>
3.Client和Cluster模式的区别
1. Driver 的存储位置
- Client 模式: Driver 运行在提交作业的本地机器上,负责 Spark 应用程序的调度和任务分配。
- Cluster 模式: Driver 运行在 YARN 的 NodeManager 上,具体由 YARN 的 ApplicationMaster 负责启动并管理。
2. 流量问题
- Client 模式: 由于 Driver 运行在本地机器上,所有任务调度和数据的中间结果需要通过网络回传给本地 Driver,容易导致本地机器流量激增,尤其是数据量较大时。
- Cluster 模式: Driver 和 YARN 集群运行在一起,调度和数据传输均在集群内部完成,因此不存在流量激增问题。
3. 网络连接问题
- Client 模式: Driver 运行在本地机器,与 YARN 集群可能不在同一个机房或网络区域,容易因为网络延迟或不稳定导致作业失败,特别是在 Driver 与 Executor 的通信中。
- Cluster 模式: Driver 与 YARN 集群的 NodeManager 运行在相同机房内,网络延迟低且更稳定,不易因网络问题导致作业中断。