Bagging与随机森林

Bagging与随机森林

Bagging

自助法(bootstrapping)

给定包含 m 个样本的数据集 D,我们对它进行采样产生数据集 D :每次随机从 D 中挑选一个样本,将其拷贝放入 D,然后再将该样本放回初始数据集 D 中,使得该样本在下次采样时仍有可能被采到;这个过程重复执行 m 次后,我们就得到了包含 m 个样本的数据集 D,这就是自助采样的结果。显然, D 中有一部分样本会在 D中多次出现,而另一部分样本不出现。可以做一个简单的估计,样本在 m 次采样中始终不被采到的概率是 (11m)m,取极限得到

limx(11m)m1e0.368

即通过自助采样,初始数据集 D 中约有 36.8% 的样本未出现在采样数据集 D 中。那这些数据可以用作验证集来对泛化性能进行“包外估计”。

流程

通过自助采样法,可以采样出 T 个含 m 个训练样本的采样集,然后基于每个采样集训练出一个基学习器,再将这些基学习器进行结合。在对预测输出值进行结合时,Bagging 通常对分类任务使用简单投票法,对回归任务使用简单平均法。

随机森林

随机森林是Bagging的一个扩展变体。RF 在以决策树为基学习器构建 Bagging 集成的基础上,进一步在决策树的训练过程中引入了随机属性选择。传统决策树在选择划分属性时是在当前的节点的属性集合(假定有 d 个属性)中选择一个最优属性;而在RF中,对基决策树的每个节点,先从该节点的属性集合中随机选择一个包含 k 个属性的子集,然后再从这个子集中选择一个最优属性用于划分。这里 k 控制了随机性的引入程度。推荐 k=log2d
值得一提的是,随机森林的训练效率常优于 Bagging,因为在个体决策树的构建过程中,Bagging使用的是“确定型”决策树,在选择划分属性时要对节点的所有属性进行考察。而随机森林使用的“随机型”觉得书则只需要考察一个属性子集。

结合策略

由于学习任务的假设空间往往很大,可能有多个假设在训练集上达到同等性能,此时若使用单学习器可能因误选而导致泛化性能不佳。第二,学习算法往往会陷入局部极小,有的局部极小点对应的泛化性能可能很糟糕,而通过多次运行后进行结合,可降低陷入糟糕局部极小点的风险。

添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值