- 博客(195)
- 资源 (1)
- 收藏
- 关注
原创 Node-RED学习笔记——HTML 文件
Node节点的.html 文件定义了节点与编辑器的显示格式。它包含三个不同的部分,每个部分都包装在它自己的标记.html <script>中。 节点定义:向编辑器注册的主节点定义,定义调色板类别、可编辑属性和要使用的图标等。它在常规 javascript 脚本标记中defaults 编辑对话框data-template-name:定义节点编辑对话框内容的编辑模板。type="text/html" data-template-name="node-type" 帮助文本..
2020-08-20 11:08:49
1701
原创 Node-RED学习笔记——JavaScript 文件
Node节点 .js文件定义了节点运行时的行为。Node构造函数Node节点由构造函数定义,该函数用于创建节点的新实例。该函数在运行时注册,以便在流中部署相应类型的节点时可以调用该函数。function SampleNode(config) { RED.nodes.createNode(this,config); // node-specific code goes here}RED.nodes.registerType("sample",SampleNode);接
2020-08-20 09:47:49
824
原创 Docker学习笔记(五)—— Windows下构建Dockerfile镜像创建Python运行环境
目的在windows系统下通过Dockerfile构建一个镜像,实现python程序运行功能。编写Dockerfile文件创建Dockerfile文件、py文件、requirements.txt文件放到同一目录下:编写Dockerfile# 基于python镜像FROM python# 作者信息MAINTAINER yucen <https://blog.csdn.net/qq_14997473># 工作目录WORKDIR /code# 拷贝py文件和
2020-08-06 16:29:32
5473
原创 Node-RED学习笔记——安装与基础操作
一、Node-RED简介Node-RED是IBM公司开发的一个可视化的编程工具,以满足他们快速连接硬件和设备到Web服务和其他软件的需求,很快发展成为一种通用的物联网编程工具。Node-RED是一种基于“流”(Flows) 的编程工具,它有一个可视化编辑器,允许将预定义的代码块(称为“节点”,Node)连接起来执行任务。连接的节点,通常是输入节点、处理节点和输出节点的组合,当它们连接在一起时,构成一个“流”(Flows)。二、Node-RED安装1.Node.js安装Node-RED..
2020-07-24 17:43:04
8855
原创 聚类算法评估——轮廓系数及python实现
含义轮廓系数(Silhouette Coefficient),是聚类效果好坏的一种评价方式。 轮廓系数的值是介于 [-1,1] ,越趋近于1代表内聚度和分离度都相对较优。计算步骤1)对于簇中的每个向量,分别计算它们的轮廓系数。 对于其中的一个点 i 来说: 计算 簇内不相似度a(i) :i向量到同簇内其他点不相似程度的平均值,体现凝聚度 ...
2019-07-22 13:39:47
31883
3
原创 排序算法总结
常见排序算法评估时间复杂度O(n2):冒泡排序、选择排序、插入排序O(nlogn):归并排序、快速排序、堆排序、希尔排序O(n):计数排序、基数排序 不是基于比较的排序算法,思想来于桶排序空间复杂度O(1):插入排序、选择排序、冒泡排序、堆排序(用递归实现是O(logn))、希尔排序O(logn~n):快速排序O(n):归并排序O(m):计数排序,基数排序(...
2019-07-07 22:38:43
215
原创 MongoDB学习笔记(七)—— 条件操作符
描述条件操作符用于比较两个表达式并从mongoDB集合中获取数据。MongoDB中条件操作符有:(>) 大于 - $gt (<) 小于 - $lt (>=) 大于等于 - $gte (<= ) 小于等于 - $lte大于操作符 (>) - $gt如果你想获取 "col" 集合中 "likes" 大于 100 的数据,可使用以下命令:db....
2019-06-19 12:12:11
408
原创 Python学习笔记——当前路径创建空的文件夹
目标在当前路径创建 mydata 文件夹,如果 mydata 文件夹已经存在的话将其清空。用到的函数os.getcwd()返回当前工作目录。os.path.exists()如果路径 path 存在,返回 True;如果路径 path 不存在,返回 False。os.walk()os.walk() 方法是一个简单易用的文件、目录遍历器,可以帮助我们高效的处理文件、目录...
2019-05-21 16:16:46
4338
1
原创 Python学习笔记——png图片生成GIF
将指定目录下的按照字母序排序好的.png格式图片,生成GIF动图。代码如下:# -*- coding: utf-8 -*-import imageioimport os'''# 只支持png格式,需要先命名排序好(默认按照字母序排列)# source(字符串):素材图片路径,生成的gif也保存在该路径# gifname(字符串):生成的gif的文件名,命名时带后缀如:'1....
2019-05-15 13:44:09
3291
1
原创 python利用pandas读取csv报错:UnicodeDecodeError: 'utf-8' codec can't decode byte 0xc8...解决方法
1、用记事本打开csv文件2、另存为 ==> 编码,修改为"UTF-8"3、保存,问题解决
2019-05-10 16:18:30
6820
1
原创 MongoDB学习笔记(六)—— 聚合 aggregate
MongoDB 聚合MongoDB中聚合(aggregate)主要用于处理数据(诸如统计平均值,求和等),并返回计算后的数据结果。aggregate() 方法MongoDB中聚合的方法使用aggregate()。类似sql语句中的 count(*)。aggregate() 返回的结果还是一个文档{},表达式里必须包含_id属性,否则会报错。_id表示分组的依据,使用某个字段的格...
2019-05-08 16:14:34
926
原创 Docker学习笔记(二)—— 安装
本文介绍了Docker在win10系统下的安装、测试以及镜像加速一、启用Hyper-V在 Windows 上安装 Docker 之前先要启动虚拟机,而我们可直接设置启用 Hyper-V . 它是 Windows10专业版系统 自带的虚拟技术。要注意的是,启用了 Hyper-V 以后,一些其它的虚拟机软件就用不了了,比如 Virtualbox ...操作步骤"开始" ==> "...
2019-05-05 20:53:21
320
原创 Docker学习笔记(一)—— 基础介绍
什么是容器?一句话概括容器:容器就是将软件打包成标准化单元,以用于开发、交付和部署。容器镜像是轻量的、可执行的独立软件包 ,包含软件运行所需的所有内容:代码、运行时环境、系统工具、系统库和设置。 容器化软件适用于基于Linux和Windows的应用,在任何环境中都能够始终如一地运行。 容器赋予了软件独立性,使其免受外在环境差异(例如,开发和预演环境的差异)的影响,从而有助于减少团队间在...
2019-05-05 20:52:54
250
原创 MongoDB学习笔记(五)—— 增删改查
本文将介绍MongoDB数据库的增删改查相关操作,具体可参考官方手册:https://docs.mongodb.com/manual/该页面还提供了MongoDB Web Shell,可以用来在线模拟数据库环境,方便学习。增db.collection.insert()- 向集合中插入一个或多个文档当我们向集合中插入文档时,如果没有给文档指定 _id 属性,则数据库会自动为文...
2019-04-29 20:24:41
381
原创 MongoDB学习笔记(四)—— 文件导入/导出
在MongoDB中想要进行数据的导入和导出操作,可以使用安装目录下的bin目录下的mongoexport.exe 与 mongoimport.exe操作时,不用登陆 MongoDB,在cmd命令行中直接操作即可,首先需要进入到MongoDB安装目录中的bin文件夹。cd C:\Program Files\MongoDB\Server\4.0\bin方便起见,可以将该目录添加到...
2019-04-28 15:49:52
779
原创 MongoDB学习笔记(三)—— 创建Database、Collection、用户
创建Database本文中的创建Database、Collection、用户操作都需要先打开并运行Mongo。首先要先启动MongoDB服务,参考笔记(一)中的方法。接下来,在cmd窗口输入以下命令启动MongoDB客户端。mongo输入1+1用来验证是否成功,成功会返回结果21. 查看MongoDB的database列表show dbs2. ...
2019-04-28 13:05:41
6901
原创 MongoDB学习笔记(二)—— 可视化
1、下载下载MongoDB的可视化工具Robo 3T,链接:https://robomongo.org/download2、安装下载完成点击文件,按步骤安装:点击安装完成。3、配置数据库连接属性1)在主界面,点击File下方的Connect图标2)新建数据库连接:点击Create 弹出属性配置框3)配置连接参数如下图:(需要输入用户...
2019-04-27 17:05:02
327
原创 MongoDB学习笔记(一)—— 安装与配置
1、介绍MongoDB 是由C++语言编写的,是一个基于分布式文件存储的开源数据库系统,属于非关系型数据库(NoSQL)。特点:开发快速、极简灵活、面向文档(文件存储格式为BSON,一种JSON的扩展)三个概念:数据库:数据的仓库,可存放集合 集合:可存放文档 文档:最小单位2、下载MongoDB 提供了可用于 32 位和 64 位系统的预编译二进制包,你可以从Mon...
2019-04-27 15:31:43
705
原创 动态规划问题 —— 最长公共子串
题目描述链接:https://www.nowcoder.com/questionTerminal/02e7cc263f8a49e8b1e1dc9c116f7602时间限制:3秒;空间限制:32768K对于两个字符串,请设计一个时间复杂度为O(m*n)的算法(这里的m和n为两串的长度),求出两串的最长公共子串的长度。这里的最长公共子串的定义为两个序列U1,U2,..Un和V1,V2,.....
2019-04-18 16:45:05
568
原创 动态规划问题 —— 最长公共子序列
题目描述链接:https://www.nowcoder.com/questionTerminal/c996bbb77dd447d681ec6907ccfb488a时间限制:3秒;空间限制:32768K对于两个字符串,请设计一个高效算法,求他们的最长公共子序列的长度,这里的最长公共子序列定义为有两个序列U1,U2,U3...Un和V1,V2,V3...Vn,其中Ui<Ui+1...
2019-04-15 20:44:09
310
原创 动态规划问题 —— 最长递增子序列
题目描述链接:https://www.nowcoder.com/questionTerminal/585d46a1447b4064b749f08c2ab9ce66对于一个数字序列,请设计一个复杂度为O(nlogn)的算法,返回该序列的最长上升子序列的长度,这里的子序列定义为这样一个序列U1,U2...,其中Ui < Ui+1,且A[Ui] < A[Ui+1]。给定一个数字序...
2019-04-14 21:54:37
389
原创 最大似然估计(ML)和最小均方误差(LSE)
题目一个有偏的硬币,抛了100次,出现1次人头,99次字。请用最大似然估计(ML)和最小均方误差(LSE)估计出现人头的概率。解析
2019-04-12 11:56:03
7623
转载 满二叉树和完全二叉树
满二叉树一棵深度为k,且有2^k-1个节点的树是满二叉树。另一种定义:除了叶结点外每一个结点都有左右子叶且叶子结点都处在最底层的二叉树。这两种定义是等价的。从树的外形来看,满二叉树是严格三角形的,大家记住下面的图,它就是满二叉树的标准形态:所有内部节点都有两个子节点,最底一层是叶子节点。性质:1)如果一颗树深度为h,最大层数为k,且深度与最大层数相同...
2019-04-01 15:43:20
1552
原创 【笔试面试】青草游戏
题目描述牛牛和羊羊都很喜欢青草。今天他们决定玩青草游戏。最初有一个装有n份青草的箱子,牛牛和羊羊依次进行,牛牛先开始。在每个回合中,每个玩家必须吃一些箱子中的青草,所吃的青草份数必须是4的x次幂,比如1,4,16,64等等。不能在箱子中吃到有效份数青草的玩家落败。假定牛牛和羊羊都是按照最佳方法进行游戏,请输出胜利者的名字。时间限制:1秒;空间限制:32768K输入描述:输入包括...
2019-03-29 16:40:31
688
转载 随机森林和GBDT的区别
随机森林和GBDT的区别随机森林采用的bagging思想,而GBDT采用的boosting思想。这两种方法都是Bootstrap思想的应用,Bootstrap是一种有放回的抽样方法思想。虽然都是有放回的抽样,但二者的区别在于:Bagging采用有放回的均匀取样,而Boosting根据错误率来取样(Boosting初始化时对每一个训练样例赋相等的权重1/n,然后用该算法对训练集训练t轮,每次训练...
2019-03-28 20:23:26
4769
转载 Top K算法
1、查找最大的k个元素1、排序,快速排序。我们知道,快速排序平均所费时间为n*logn,从小到大排序这n个数,然后再遍历序列中后k个元素输出,即可,总的时间复杂度为O(n*logn+k)=O(n*logn)。2、排序,选择排序。用选择或交换排序,即遍历n个数,先把最先遍历到得k个数存入大小为k的数组之中,对这k个数,利用选择或交换排序,找到k个数中的最小数kmin(kmin设为k个元素的数...
2019-03-07 14:31:00
437
原创 C#中的set和get方法
在面向对象编程中,外界是不能随意访问私有变量的。在C#程序中需要访问私有成员变量时,就要用到set和get方法,它们相当于外界访问对象的一个接口。语法为:public <返回类型(要与被访问变量的类型相同)> <属性名(不能与被访问变量同名)>{ get{ return <被访问变量>;} set{ <被访问变量> = v...
2019-02-25 11:02:18
645
原创 推荐系统笔记——推荐引擎之实现符合业务场景的推荐算法(四)
三大推荐引擎电商推荐、内容推荐、社交推荐构建一个内容推荐引擎构建一个内容推荐引擎要考虑:场景:小说网站、缺乏运营 使用习惯:重度用户 搭建推荐推荐引擎:(1)分词工具(2)设计流程模块(3)coding(4)实时打分 real time ranking流程模块:数据预处理 ---> 生成索引 ---> 加入引擎 ---> 接收请求 --->...
2019-02-21 22:37:01
642
原创 Python学习笔记——jieba “结巴”中文分词
jieba 是一款号称最好用的Python中文分词组件,分词效果非常棒。支持三种分词模式,代码对 Python 2/3 均兼容,可以用于某些项目的数据预处理。官方GitHubhttps://github.com/fxsjy/jieba安装全自动安装: easy_install jieba 或者 pip install jieba / pip3 install jieba 半自动安...
2019-02-21 21:46:53
997
1
原创 推荐系统笔记——推荐引擎之实现简单的实时推荐算法(三)
同类目推荐制造日志logfile.txt和cate.log,应用于同类目推荐:# coding=utf-8import randomuser_list = ["one", "two", "three", "four", "five"]num = ["0", "1", "2", "3", "4"
2019-02-21 12:11:25
1835
原创 Python3.x 环境下安装使用hash_ring库
hash_ring库安装pip install hash_ring 修改使其在Python3.x 环境下能用安装成功后,在程序里直接加载hash_ring库from hash_ring import *会报错如下:Traceback (most recent call last): File "D:\ProgramData\Anaconda3\lib\site...
2019-02-21 10:18:04
2522
1
原创 推荐系统笔记——推荐引擎之实现基本的实时处理(二)
流式处理优势:低响应时延、动态效果丰富、用户体验效果好、转化率高劣势:资源消耗严重、效果准确度有影响、效果起伏大且分析原因难如何打造自己的流式处理系统:• 设计场景和梳理需求(如视频网站场景、在线阅读小说的场景)• 制定流式处理规则(如点击流式处理规则、收藏流式处理规则)• 人工干预推荐结果(编辑推荐)应用流式处理:重定向、类别关联、同类目推荐、人工干预推荐结果流式...
2019-02-20 19:42:54
813
原创 推荐系统笔记——推荐引擎之实现基础(一)
推荐系统定义:通过人工或非人工方法向用户建议购买/浏览物品的有规律行为推荐引擎模块推荐引擎模块由三部分组成:接收请求、处理请求、返回结果制造日志一般推荐日志log:字段1&字段2&字段3&字段4&……制造一个简单的日志:日志格式:cookie&uid&user_agent&ip&video_id&t...
2019-02-20 17:20:04
946
原创 【笔试面试】回文素数
题目描述如果一个整数只能被1和自己整除,就称这个数是素数。如果一个数正着反着都是一样,就称为这个数是回文数。例如:6, 66, 606, 6666如果一个数字既是素数也是回文数,就称这个数是回文素数牛牛现在给定一个区间[L, R],希望你能求出在这个区间内有多少个回文素数。时间限制:1秒;空间限制:32768K输入描述:输入包括一行,一行中有两个整数(1 ≤ L ≤ R ≤ ...
2019-01-30 16:27:47
1083
原创 Python list/str类型相互转换
(1) str->lists = '12345'l = list(s)结果:['1', '2', '3', '4', '5'] (2) list->strl = ['1','2','3']s = ''.join(l)结果:'123'如果list里的元素是int型而非str型则比较麻烦,还这样写会报错,而在刷题时经常碰到需要将int型的list输出为st...
2019-01-16 22:03:45
7741
原创 Python中的排序函数sort()、sorted()
sort()sort()是Python list内置的排序方法,仅适用于对list型数据排序,其他格式使用会报错。sort()函数用于对原列表进行排序,如果指定参数,则使用比较函数指定的比较函数。该方法没有返回值,但是会对列表的对象进行排序。list.sort(cmp=None, key=None, reverse=False)cmp -- 可选参数, 如果指定了该参数会使...
2019-01-15 20:47:22
586
原创 Python2/3中的输入函数input()、raw_input()
Python中的标准输入函数Python提供了内置的函数从标准输入读入一行文本,默认的标准输入是键盘。这里的内置函数指的是Python2中的input()、raw_input()函数和Pyhont3中的input()函数 Python2中的input()函数输入数字不会报错并且保存为数字;直接输入字符会报错,要以引号形式输入,保存为字符串参考以下一段代码:a = inpu...
2019-01-14 15:41:20
1245
原创 机器学习:生成式模型和判别式模型
决策函数Y=f(X)与条件概率分布P(Y|X)决策函数Y=f(x):输入一个x,它就输出一个y值,这个y与一个阈值比较,根据比较结果判定x属于哪个类别。条件概率分布P(y|x):输入一个x,它通过比较它属于所有类的概率,然后预测时应用最大后验概率法(MAP)即比较条件概率最大的类为x对应的类别。举个例子,对于一个二分类问题:对于Y=f(x)形式的分类模型,如果输出Y大于某个阈值V就属于...
2018-12-23 11:41:27
9651
1
转载 机器学习:不均衡样本情况下的抽样
题目在分类问题中,我们经常会遇到正负样本数据量不等的情况,比如正样本为10w条数据,负样本只有1w条数据,以下最合适的处理方法是( )(多选)A. 将负样本重复10次,生成10w样本量,打乱顺序参与分类B. 直接进行分类,可以最大限度利用数据C. 从10w正样本中随机抽取1w参与分类D. 将负样本每个权重设置为10,正样本权重为1,参与训练过程---------------...
2018-12-20 21:24:42
2166
原创 机器学习实战——模型评估与结果修正
在预测模型生成结果之后,我们需要对得到的结果进行评估,进而修正预测模型,这时需要用到混淆矩阵(confusion matrix),也称为错误矩阵(error matrix)。之所以叫做‘混淆矩阵’,是因为能够直观的到有没有将样本的类别给混淆了。混淆矩阵是评判模型结果的指标,属于模型评估的一部分。矩阵的每一行代表样本所属的真实类别,矩阵的每一列则表达了分类器对于样本的类别预测,而每个格子中的数值...
2018-12-18 11:36:33
3141
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人