聚类算法评估——轮廓系数及python实现

含义

轮廓系数(Silhouette Coefficient),是聚类效果好坏的一种评价方式。     

轮廓系数的值是介于 [-1,1] ,越趋近于1代表内聚度和分离度都相对较优。

计算步骤

1)对于簇中的每个向量,分别计算它们的轮廓系数。

      对于其中的一个点 i 来说:

      计算 簇内不相似度a(i) :i向量到同簇内其他点不相似程度平均值,体现凝聚度

      计算 簇间不相似度b(i) :i向量到其他簇平均不相似程度最小值,体现分离度

      那么第i个对象的轮廓系数就为:

      si接近1,则说明样本i聚类合理;si接近-1,则说明样本i更应该分类到另外的簇;若si 近似为0,则说明样本i在两个簇的边界上。

2)所有点的轮廓系数求平均,就是该聚类结果总的轮廓系数。


python实现

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值