storm基础篇(1)

1、编程模型
DataSource:外部数据源
Spout:接受外部数据源的组件,将外部数据源转化成Storm内部的数据,以Tuple为基本的传输单元下发给Bolt
Bolt:接受Spout发送的数据,或上游的bolt的发送的数据。根据业务逻辑进行处理。发送给下一个Bolt或者是存储到某种介质上。介质可以是Redis可以是mysql,或者其他。
Tuple:Storm内部中数据传输的基本单元,里面封装了一个List对象,用来保存数据。
StreamGrouping:数据分组策略
7种:shuffleGrouping(Random函数),Non Grouping(Random函数),FieldGrouping(Hash取模)、Local or ShuffleGrouping 本地或随机,优先本地。

2、并发度
用户指定的一个任务,可以被多个线程执行,并发度的数量等于线程的数量。一个任务的多个线程,会被运行在多个Worker(JVM)上,有一种类似于平均算法的负载均衡策略。尽可能减少网络IO,和Hadoop中的MapReduce中的本地计算的道理一样。


3、架构
Nimbus:任务分配
Supervisor:接受任务,并启动worker。worker的数量根据端口号来的。
Worker:执行任务的具体组件(其实就是一个JVM),可以执行两种类型的任务,Spout任务或者bolt任务。
Task:Task=线程=executor。 一个Task属于一个Spout或者Bolt并发任务。
Zookeeper:保存任务分配的信息、心跳信息、元数据信息。

4、Worker与topology
一个worker只属于一个topology,每个worker中运行的task只能属于这个topology。    反之,一个topology包含多个worker,其实就是这个topology运行在多个worker上。
一个topology要求的worker数量如果不被满足,集群在任务分配时,根据现有的worker先运行topology。如果当前集群中worker数量为0,那么最新提交的topology将只会被标识active,不会运行,只有当集群有了空闲资源之后,才会被运行。
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值