keras/torch 下计算flops和params

# 浮点运行次数
# FLOPS:注意全大写,是floating point operations per second的缩写,意指每秒浮点运算次数,理解为计算速度。是一个衡量硬件性能的指标。
# FLOPs:注意s小写,是floating point operations的缩写(s表复数),意指浮点运算数,理解为计算量。可以用来衡量算法/模型的复杂度。
# In TF 2.x you have to use tf.compat.v1.RunMetadata instead of tf.RunMetadata
# To work your code in TF 2.1.0, i have made all necessary changes that are compliant to TF 2.x

keras 计算方法:

import tensorflow as tf
# 必须要下面这行代码
tf.compat.v1.disable_eager_execution()
print(tf.__version__)
 
# 我自己使用的函数
def get_flops_params():
    sess = tf.compat.v1.Session()
    graph = sess.graph
    flops = tf.compat.v1.profiler.profile(graph,options=tf.compat.v1.profiler.ProfileOptionBuilder.float_operation())
    params = tf.compat.v1.profiler.profile(graph,options=tf.compat.v1.profiler.ProfileOptionBuilder.trainable_variables_parameter())
    print('FLOPs: {};    Trainable params: {}'.format(flops.total_float_ops, params.total_parameters))

# 获取模型每一层的参数详情
model.summary()
# 获取模型浮点运算总次数和模型的总参数
get_flops_params()

torch 计算方法:

pip install thop

model = torchvision.models.segmentation.fcn_resnet50() # 模型
x = torch.randn(1,3,224,224) #输入
flops, params = thop.profile(model,inputs=(x,)) #计算

备注:如果是自己的模型,x改为模型forward()函数的参数

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

梦dancing

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值