# 浮点运行次数
# FLOPS:注意全大写,是floating point operations per second的缩写,意指每秒浮点运算次数,理解为计算速度。是一个衡量硬件性能的指标。
# FLOPs:注意s小写,是floating point operations的缩写(s表复数),意指浮点运算数,理解为计算量。可以用来衡量算法/模型的复杂度。
# In TF 2.x you have to use tf.compat.v1.RunMetadata instead of tf.RunMetadata
# To work your code in TF 2.1.0, i have made all necessary changes that are compliant to TF 2.x
keras 计算方法:
import tensorflow as tf
# 必须要下面这行代码
tf.compat.v1.disable_eager_execution()
print(tf.__version__)
# 我自己使用的函数
def get_flops_params():
sess = tf.compat.v1.Session()
graph = sess.graph
flops = tf.compat.v1.profiler.profile(graph,options=tf.compat.v1.profiler.ProfileOptionBuilder.float_operation())
params = tf.compat.v1.profiler.profile(graph,options=tf.compat.v1.profiler.ProfileOptionBuilder.trainable_variables_parameter())
print('FLOPs: {}; Trainable params: {}'.format(flops.total_float_ops, params.total_parameters))
# 获取模型每一层的参数详情
model.summary()
# 获取模型浮点运算总次数和模型的总参数
get_flops_params()
torch 计算方法:
pip install thop
model = torchvision.models.segmentation.fcn_resnet50() # 模型
x = torch.randn(1,3,224,224) #输入
flops, params = thop.profile(model,inputs=(x,)) #计算
备注:如果是自己的模型,x改为模型forward()函数的参数