Rocchio算法测试测试集时出错:Incompatible dimension for X and Y matrices: X.shape[1]

在白话大数据与机器学习一书,对照p222打例子:

from sklearn.feature_extraction.text import CountVectorizer
from sklearn.feature_extraction.text import TfidfTransformer
from sklearn.datasets import fetch_20newsgroups
from sklearn.neighbors.nearest_centroid import NearestCentroid
from pprint import pprint
import sys

#读取数据
newsgroups_train = fetch_20newsgroups(subset='train')
pprint(list(newsgroups_train.target_names))
#随机选4个主题
categories = ['alt.atheism','comp.graphics','soc.religion.christian','sci.med']
#下载4个主题里的文件
train_data = fetch_20newsgroups(subset = "train", categories = categories)
#文件内容在train_data.data这个变量里。现在对内容进行分词和向量化操作
count_vect = CountVectorizer()
train_counts = count_vect.fit_transform(train_data.data)
#接着对向量化之后的结果做TF-IDF转换
tfidf_transformer = TfidfTransformer()
train_tfidf = tfidf_transformer.fit_transform(train_counts)

#现在把TF-IDF转换后的结果和每条结果对应的主题编号train_data.target放入分类器中进行训练
clf = NearestCentroid().fit(train_tfidf, train_data.target)
#创建测试集合,这里有两条数据,每条数据一行内容,进行向量化和TF-IDF转换
docs_new = {'OpenGL onthe GPU is fast','God is love'}
docs_new_counts = count_vect.fit_transform(docs_new)
docs_new_tfidf = tfidf_transformer.fit_transform(docs_new_counts)
print(sys.modules[
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值