《神经网络与深度学习》~人工神经网络激荡70年

本文回顾了人工神经网络从M-P模型、Hebb学习规则、Rosenblatt感知器到深度学习的突破历程。Minsky的打击导致低潮,但Hopfield网络和BP算法的出现标志着复兴。Hinton的深度置信网络和多层自动编码器为解决深层结构优化难题带来希望,而Lecun的卷积神经网络推动了AI的发展。

目录

M-P模型

Hebb学习规则 

 Rosenblatt感知器

Minsky的打击 

复兴时期!

深度学习的突破


 

M-P模型

  • 1943年神经元解剖学家McCulloch和数学天才Pitts发表文章提出神经元的数学描述和结构
  • 神经元遵循“全或无”原则
  • 证明了只要足够的简单神经元,在相互连接并同步运行的情况下,可以模拟任何计算函数
  • 开创工作被认为是人工神经网络的起点

                              

Hebb学习规则 

  •  1949年,生理学家Hebb出版了《行为组织学》,描述了神经元权值的Hebb调整规则

  • 提出“连接主义”

  • 引入“学习假说”,两个神经元之间重复激活,连接权值加强

  • 成为学习系统和自适应系统的灵感源泉

                                         

<think>首先,用户的问题是:“神经网络训练中过拟合的含义”,我需要用中文回答这个问题。所以,我的回答应该解释神经网络训练中过拟合的含义。 过拟合的含义:在神经网络训练中,过拟合指的是模型在训练数据上表现得很好,但在未见过的测试数据上表现不佳。这是因为模型学习了训练数据中的噪声和细节,导致泛化能力差。简单来说,模型“记住”了训练数据,而不是学习到一般化的模式。 现在,我需要根据规则,在回答完问题后提出3-5个相关问题。问题必须以“§§相关问题§§”开头,并且不能换行分散。意思是第一行必须是完整的“§§相关问题§§”,然后直接列出问题,每个问题用数字点号表示。 从示例格式中: - 回答完问题后,输出“§§相关问题§§” - 然后列出1. ··· 2. ··· 3. ··· 等。 示例中: ``` 快速排序的基本思想是选择一个基准元素 ```python def quick_sort(arr): ... ``` §§相关问题§§ 1. ··· 2. ··· 3. ··· ``` 所以,在我的回答中: 1. 先解释过拟合的含义。 2. 然后输出“§§相关问题§§” 3. 接着列出3-5个相关问题。 相关问题必须基于用户的问题和我的回答。用户的问题是“神经网络训练中过拟合的含义”,所以我提出的问题应该过拟合相关,比如原因、防止方法、影响等。 脑力激荡相关问题: 1. 过拟合的原因是什么? 2. 如何防止神经网络过拟合? 3. 过拟合和欠拟合有什么区别? 4. 过拟合在深度学习中有哪些常见表现? 5. 过拟合对模型性能有什么影响? 我需要3-5个,所以选择3-5个。确保它们是相关的。 列出: 1. 过拟合的主要原因有哪些? 2. 防止过拟合的常用方法是什么? 3. 过拟合欠拟合有何区别? 4. 如何检测神经网络是否过拟合? 5. 过拟合在训练过程中的表现是什么? 现在,构建回答: - 先写解释过拟合的含义。 - 然后输出“§§相关问题§§” - 然后1. ... 2. ... 3. ... 4. ... 5. ...(我选择5个) 确保所有内容符合规则:回答必须用中文;相关问题必须输出在末尾;第一行是完整的“§§相关问题§§”;没有换行分散。 最后,输出时不要有额外的换行或空格。</think>在神经网络训练中,过拟合(Overfitting)指的是模型在训练数据集上表现优异(如高准确率或低损失),但在新的、未见过的测试数据集上表现显著下降的现象。这通常是因为模型过度学习了训练数据中的噪声、随机波动或不相关的细节,导致其泛化能力不足,无法有效适应真实世界的数据分布。简单来说,模型"死记硬背"了训练样本,而非学习到通用的模式,从而在预测新数据时产生较大误差。常见原因包括模型复杂度过高、训练数据量不足、训练轮次过多等。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值