3.2 实践课:词向量应用演示

在这里插入图片描述
字典的意义,训练的时候人识别的符号转换成计算机能识别的,预测的时候,计算机识别的转换成分能识别
在这里插入图片描述
非常标准的写法,引入一个包里面相应的类,然后初始化,然后调用类里面相应的方法即可
在这里插入图片描述
这个BOW会快,直接用现成的训练好的词向量做运算即可,基于无监督的方式
在这里插入图片描述
自监督的方式训练好的词向量,CBOW或者skip-gram,维度一般是300维以内,预训练模型的维度可能会达到768,可以用gensim的工具包直接应用底层CBOW或者skip-gram算法训练

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值