Teacher forcing是什么? encoder-decoder框架的理解

encoder-decoder框架,编码和解码是同时训练的,编码的输入和解码的输入,都是统一作为整体的输入数据,解码的输出作为整体的输出

Teacher forcing是什么?


RNN 存在两种训练模式(mode):

  1. free-running mode: 上一个state的输出作为下一个state的输入。
  2. teacher-forcing mode: 使用来自先验时间步长的输出作为输入。

teacher forcing要解决什么问题?

常见的训练RNN网络的方式是free-running mode,即将上一个时间步的输出作为下一个时间步的输入。可能导致的问题:

  • Slow convergence.
  • Model instability.
  • Poor skill.

训练迭代过程早期的RNN预测能力非常弱,几乎不能给出好的生成结果。如果某一个unit产生了垃圾结果,必然会影响后面一片unit的学习。错误结果会导致后续的学习都受到不好的影响,导致学习速度变慢,难以收敛。teacher forcing最初的motivation就是解决这个问题的。

使用teacher-forcing,在训练过程中,模型会有较好的效果,但是在测试的时候因为不能得到ground truth的支持,存在训练测试偏差,模型会变得脆弱。

什么是teacher forcing?

teacher-forcing 在训练网络过程中,每次不使用上一个state的输出作为下一个state的输入,而是直接使用训练数据的标准答案(ground truth)的对应上一项作为下一个state的输入。

Teacher Forcing工作原理: 在训练过程的[Math Processing Error]t会随着时间的推移而改变,称为计划抽样(scheduled sampling)

<div id="blog_post_info">
0
0
<div class="clear"></div>
<div id="post_next_prev">

<a href="https://www.cnblogs.com/dangui/p/14675599.html" class="p_n_p_prefix">« </a> 上一篇:    <a href="https://www.cnblogs.com/dangui/p/14675599.html" title="发布于 2021-04-19 09:47">NLP三大特征抽取器(CNN/RNN/TF)比较</a>
<br>
<a href="https://www.cnblogs.com/dangui/p/14690944.html" class="p_n_p_prefix">» </a> 下一篇:    <a href="https://www.cnblogs.com/dangui/p/14690944.html" title="发布于 2021-04-22 18:29">NLP数据增强</a>
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值