Encoder-decoder 与Decoder-only 模型之间的使用区别

承接上文:Transformer Encoder-Decoer 结构回顾
笔者以huggingface T5 transformer 对encoder-decoder 模型进行了简单的回顾。

由于笔者最近使用decoder-only模型时发现,其使用细节和encoder-decoder有着非常大的区别;而huggingface的接口为了实现统一化,很多接口的使用操作都是以encoder-decoder的用例为主(如T5),导致在使用hugging face运行decoder-only模型时(如GPT,LLaMA),会遇到很多反直觉的问题。

本篇进一步涉及decoder-only的模型,从技术细节上,简单列举一些和encoder-decoder模型使用上的区别。

以下讨论均以huggingface transformer接口为例。

1. 训练时input与output合并

对于encoder-decoder模型,我们需要把input和output 分别 喂给模型的encoder和decoder。也就是说,像T5这种模型,会有一个单独的encoder编码input的上下文信息,由decoder解码output和计算loss。简而言之,如果是encoder-decoder模型,我们 只把 output喂给decoder(用于计算loss,teacher forcing),这对于我们大多是人来说是符合直觉的。

但decoder-onyl模型,需要你手动地将input和output合并在一起,作为decoder的输入。因为,从逻辑上讲,对于decoder-only模型而言,它们并没有额外的encoder去编码input的上下文,所以需要把input作为“前文”,让decoder基于这一段“前文”,把“后文”的output预测出来(auto regressive&#

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值