承接上文:Transformer Encoder-Decoer 结构回顾
笔者以huggingface T5 transformer 对encoder-decoder 模型进行了简单的回顾。
由于笔者最近使用decoder-only模型时发现,其使用细节和encoder-decoder有着非常大的区别;而huggingface的接口为了实现统一化,很多接口的使用操作都是以encoder-decoder的用例为主(如T5),导致在使用hugging face运行decoder-only模型时(如GPT,LLaMA),会遇到很多反直觉的问题。
本篇进一步涉及decoder-only的模型,从技术细节上,简单列举一些和encoder-decoder模型使用上的区别。
以下讨论均以huggingface transformer接口为例。
1. 训练时input与output合并
对于encoder-decoder模型,我们需要把input和output 分别 喂给模型的encoder和decoder。也就是说,像T5这种模型,会有一个单独的encoder编码input的上下文信息,由decoder解码output和计算loss。简而言之,如果是encoder-decoder模型,我们 只把 output喂给decoder(用于计算loss,teacher forcing),这对于我们大多是人来说是符合直觉的。
但decoder-onyl模型,需要你手动地将input和output合并在一起,作为decoder的输入。因为,从逻辑上讲,对于decoder-only模型而言,它们并没有额外的encoder去编码input的上下文,所以需要把input作为“前文”,让decoder基于这一段“前文”,把“后文”的output预测出来(auto regressive&#