CPU、内存、显卡等硬件因素也影响着你的深度学习模型性能

参考:https://posts.careerengine.us/p/5dcb5f53bb8d8844ea19cd0f

数据流动路径

假设我们现在有一批图片集放在硬盘当中,待读取进内存送入GPU运算,那么一般会经历以下流程:
cpu发出读取指令,从硬盘中找到图片数据,并存到内存中;
cpu从内存中取出一批数据,转化为numpy array,并作数据预处理/增强操作,如翻转、平移、颜色变换等。处理完毕后送回内存。
cpu内存(后面简称内存)和gpu内存(后面简称显存)各开辟一块缓冲区,内存中的一个batch的数据通过PCIe通道传输到显存当中。
GPU核心从显存中获取数据进行并行计算,计算结果返回至显存中。
计算好的结果将从显存经过PCIe通道返回到内存。

这5个步骤涉及到几个影响数据传输速度的环节:

硬盘读取速度;
PCIe传输速度;
内存读写速度;
cpu频率。
我们首先来说说硬盘。

硬件的瓶颈之后就是软件层面的多线程

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值