在caffe上训练网络模型总结

这段时间使用迁移学习的方法,使用VGG16模型训练自己的数据集,现将在训练过程中遇到的问题记录下来:

1、不改变VGG16模型的网络结构,来训练自己的数据集。这部分都是照着网上一步一步来,没有什么大的问题,就是要特别要注意base_lr(学习率的设置),这个设置的不对在训练过程中会出现不收敛的情况。

2、改变VGG16模型,来训练自己的数据集。这个时候可以使用迁移学习也可以不使用迁移学习,使用不适用迁移学习主要是在vgg_train.bat中是否有--weights=C:/caffe/caffe-master/examples/vggface/VGG_FACE.caffemodel此行代码。这部分我依然使用的是迁移学习的方法,这个时候一定明白在训练的过程中你的训练次数时候足够,我用的是小样本进行训练,总共是200张照片一共40个人,batch_size设置为3,max_iter最大迭代次数为600,训练后准确率一直很低而且loss值一直下不去。之后看了一些文章和问问同学后发现是我的batch_size设置的太小,这就相当于我只训练个1800张照片这是远远不够的。

关于batch_size的介绍可以看看这篇文章:https://blog.csdn.net/xuxiatian/article/details/72649901

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值