1)AlexNet 相比于传统的CNN 的改动
1.数据增强
2 dropout
3 Relu 激活函数
4 Local Response Normalization 局部响应归一化,利用临近的数据做归一化
5 overlapping Pooling pooling 的步长比Pooling kernel 的对应边要小
6 多GPU 并行
2) VGG 很好的继承了AlexNet ,更深
3)GoogleNet
更深。主要创新是Inception,是一种网中网的结果,即原来的结点也是一个网络,Inception 一直在不断发展,其中的1*1 卷积主要是用来降维的,
4) ResNet
更深 主要的创新是残差网络,这个网络的提出本质还是要解决层次比较深的时候无法训练的问题,优化目标从拟合输出H(x) 变成输出和输入的差H(x)-x。