深度学习-经典网络对比

1)AlexNet 相比于传统的CNN 的改动

1.数据增强

2 dropout

3 Relu 激活函数

4 Local Response Normalization 局部响应归一化,利用临近的数据做归一化

5 overlapping Pooling  pooling 的步长比Pooling kernel 的对应边要小

6 多GPU 并行

2) VGG 很好的继承了AlexNet ,更深

3)GoogleNet

更深。主要创新是Inception,是一种网中网的结果,即原来的结点也是一个网络,Inception 一直在不断发展,其中的1*1 卷积主要是用来降维的,

4) ResNet

更深 主要的创新是残差网络,这个网络的提出本质还是要解决层次比较深的时候无法训练的问题,优化目标从拟合输出H(x) 变成输出和输入的差H(x)-x。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值