图神经网络系列(gnn)及其实现--小白系列

图神经网络(GNN)介绍
图神经网络(Graph Neural Network,简称GNN)是一类特殊的神经网络模型,被广泛用于处理具有图结构的数据。GNN通过学习节点之间的关系和局部结构来提取图数据中的特征,并在许多领域中取得了显著的成果。本文将介绍几种常见的GNN模型,包括GCN、SAGE、GAT、GATNE和Node2Vec,并对它们的算法原理、输入输出、代码实现以及优缺点进行详细讨论。

  1. 图卷积网络(GCN)
    1.1 算法介绍
    GCN是一种基于卷积操作的图神经网络模型,旨在学习节点的表示向量,使得节点的特征能够利用节点之间的连接关系得到更新。GCN模型的核心思想是将节点的邻居节点信息进行聚合,并利用卷积操作对聚合后的邻居信息进行整合。
    1.2 输入输出

1.输入:图数据,包括节点特征矩阵和邻接矩阵。
2.输出:更新后的节点特征矩阵。

1.3 代码示例
import torch
import torch.nn as nn
import torch.nn.functional as F

class GCN(nn.Module):
def init(self, in_features, out_features):
super(GCN, self).init()
self.linear = nn.Linear(in_features, out_features)

def forward(self, x, adj):
    x = torch.matmul(adj, x)
    x = self.linear(x)
    x = F.relu(x)
    return x

1.4 优缺点

3.优点:GCN具有参数共享和局部连接性的优势,能够学习节点的局部结构信息,并具有较强的泛化能力。
4.缺点:GCN模型采用邻居聚合的方式,容易受到图中噪声节点的干扰,并且无法处理动态图。

  1. 图注意力网络(GAT)
    2.1 算法介绍
    GAT是一种基于注意力机制的图神经网络模型,通过学习节点之间的权重分配来动态地聚合邻居信息。GAT模型采用自注意力机制,使得每个节点可以根据邻居节点的重要性进行不同程度的聚合。
    2.2 输入输出

5.输入:图数据,包括节点特征矩阵和邻接矩阵。
6.输出:更新后的节点特征矩阵。

2.3 代码示例
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch_geometric.nn import GATConv

class GAT(nn.Module):
def init(self, in_features, out_features):
super(GAT, self).init()
self.conv = GATConv(in_features, out_features, num_heads=4)

def forward(self, x, edge_index):
    x = self.conv(x, edge_index)
    x = F.relu(x)
    return x

2.4 优缺点

7.优点:GAT模型能够根据节点之间的注意力权重进行邻居信息的聚合,具有较好的灵活性和表达能力。
8.缺点:GAT模型在处理大规模图数据时可能存在计算效率低下的问题,并且对超参数的选择较为敏感。

  1. 图采样注意力网络(SAGE)
    3.1 算法介绍
    SAGE是一种基于图采样的图神经网络模型,通过采样邻居节点的方式在节点层次上进行信息聚合。SAGE模型旨在在不完整的图数据中学习节点的表示向量,缓解大规模图数据上的计算和内存压力。
    3.2 输入输出

9.输入:图数据,包括节点特征矩阵和邻接矩阵。
10.输出:更新后的节点特征矩阵。

3.3 代码示例
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch_geometric.nn import SAGEConv

class SAGE(nn.Module):
def init(self, in_features, out_features):
super(SAGE, self).init()
self.conv = SAGEConv(in_features, out_features)

def forward(self, x, edge_index):
    x = self.conv(x, edge_index)
    x = F.relu(x)
    return x

3.4 优缺点

11.优点:SAGE模型通过图采样的方式有效地处理大规模图数据,具有较高的计算和内存效率。
12.缺点:SAGE模型可能会受到采样邻居节点策略的影响,在采样过程中可能丢失部分全局信息。

  1. 超网络注意力网络(GATNE)
    4.1 算法介绍
    GATNE是一种基于超网络的图神经网络模型,用于学习节点和边的特征表示。GATNE模型通过联合学习节点和边的嵌入向量,并利用超网络的方式对节点和边的注意力权重进行建模。
    4.2 输入输出

13.输入:图数据,包括节点特征和边信息。
14.输出:节点和边的嵌入向量。

4.3 代码示例
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch_geometric.nn import GATConv

class GATNE(nn.Module):
def init(self, num_entities, num_relations, embedding_dim):
super(GATNE, self).init()
self.entity_embedding = nn.Embedding(num_entities, embedding_dim)
self.relation_embedding = nn.Embedding(num_relations, embedding_dim)
self.conv = GATConv(embedding_dim, embedding_dim, num_heads=2)

def forward(self, triplets):
    entities = triplets[:, 0]
    relations = triplets[:, 1]
    x_entity = self.entity_embedding(entities)
    x_relation = self.relation_embedding(relations)
    x = torch.cat((x_entity, x_relation), dim=1)
    x = self.conv(x, triplets)
    x = F.relu(x)
    return x

4.4 优缺点

15.优点:GATNE模型能够学习到节点和边的嵌入向量,并考虑到节点和边的关系,具有较好的表达能力。
16.缺点:GATNE模型的超网络方式会导致模型的复杂度增加,可能需要更多的计算资源来训练和推理。

  1. 节点嵌入学习模型(Node2Vec)
    5.1 算法介绍
    Node2Vec是一种基于节点嵌入学习的图神经网络模型,旨在学习节点的低维嵌入向量,使得节点之间的相似性能够在嵌入空间中得到保持。Node2Vec模型采用随机游走和Skip-gram模型的方式学习节点的嵌入表示。
    5.2 输入输出

17.输入:图数据,包括节点列表和邻接矩阵。
18.输出:节点的嵌入向量。

5.3 代码示例
import gensim
from gensim.models import Word2Vec

class Node2Vec:
def init(self, graph, dimensions=128, walk_length=80, num_walks=10, window_size=10, workers=1, iter=1):
self.graph = graph
self.dimensions = dimensions
self.walk_length = walk_length
self.num_walks = num_walks
self.window_size = window_size
self.workers = workers
self.iter = iter

def train(self):
    walks = self._generate_random_walks()
    model = Word2Vec(walks, size=self.dimensions, window=self.window_size, min_count=0, sg=1, workers=self.workers, iter=self.iter)
    return model

def _generate_random_walks(self):
    # 生成随机游走序列的代码实现
    pass

5.4 优缺点

19.优点:Node2Vec模型能够学习到节点的低维嵌入向量,并考虑节点之间的相似性,适用于节点分类、节点聚类等任务。
20.缺点:Node2Vec模型在处理大规模图数据时可能会面临计算和内存的挑战,且对超参数的选择敏感。

结论
本文介绍了几种常见的图神经网络模型,包括GCN、SAGE、GAT、GATNE和Node2Vec。每种模型都有其独特的算法原理、输入输出、代码实现以及优缺点。研究者和开发者可以根据具体任务和数据特点选择合适的模型,并进行相应的调优和改进。图神经网络在图数据分析、社交网络分析、推荐系统等领域具有广泛的应用前景,也是当前研究的热点之一。

  • 2
    点赞
  • 19
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
人工智能(AI)最近经历了复兴,在视觉,语言,控制和决策等关键领域取得了重大进展。 部分原因在于廉价数据和廉价计算资源,这些资源符合深度学习的自然优势。 然而,在不同的压力下发展的人类智能的许多定义特征仍然是当前方法无法实现的。 特别是,超越一个人的经验 - 从婴儿期开始人类智能的标志 - 仍然是现代人工智能的一项艰巨挑战。 以下是部分立场文件,部分审查和部分统一。我们认为组合概括必须是AI实现类似人类能力的首要任务,结构化表示和计算是实现这一目标的关键。就像生物学利用自然和培养合作一样,我们拒绝“手工工程”和“端到端”学习之间的错误选择,而是倡导一种从其互补优势中获益的方法。我们探索如何在深度学习架构中使用关系归纳偏差来促进对实体,关系和组成它们的规则的学习。我们为AI工具包提供了一个新的构建模块,具有强大的关系归纳偏差 - 形网络 - 它概括和扩展了在形上运行的神经网络的各种方法,并为操纵结构化知识和生成结构化行为提供了直接的界面。我们讨论网络如何支持关系推理和组合泛化,为更复杂,可解释和灵活的推理模式奠定基础。作为本文的配套文件,我们还发布了一个用于构建形网络的开源软件库,并演示了如何在实践中使用它们。
# GPF ## 一、GPF(Graph Processing Flow):利用神经网络处理问题的一般化流程 1、节点预表示:利用NE框架,直接获得全每个节点的Embedding; 2、正负样本采样:(1)单节点样本;(2)节点对样本; 3、抽取封闭子:可做类化处理,建立一种通用数据结构; 4、子特征融合:预表示、节点特征、全局特征、边特征; 5、网络配置:可以是输入、输出的网络;也可以是输入,分类/聚类结果输出的网络; 6、训练和测试; ## 二、主要文件: 1、graph.py:读入数据; 2、embeddings.py:预表示学习; 3、sample.py:采样; 4、subgraphs.py/s2vGraph.py:抽取子; 5、batchgraph.py:子特征融合; 6、classifier.py:网络配置; 7、parameters.py/until.py:参数配置/帮助文件; ## 三、使用 1、在parameters.py中配置相关参数(可默认); 2、在example/文件夹中运行相应的案例文件--包括链接预测、节点状态预测; 以链接预测为例: ### 1、导入配置参数 ```from parameters import parser, cmd_embed, cmd_opt``` ### 2、参数转换 ``` args = parser.parse_args() args.cuda = not args.noCuda and torch.cuda.is_available() torch.manual_seed(args.seed) if args.cuda: torch.cuda.manual_seed(args.seed) if args.hop != 'auto': args.hop = int(args.hop) if args.maxNodesPerHop is not None: args.maxNodesPerHop = int(args.maxNodesPerHop) ``` ### 3、读取数据 ``` g = graph.Graph() g.read_edgelist(filename=args.dataName, weighted=args.weighted, directed=args.directed) g.read_node_status(filename=args.labelName) ``` ### 4、获取全节点的Embedding ``` embed_args = cmd_embed.parse_args() embeddings = embeddings.learn_embeddings(g, embed_args) node_information = embeddings #print node_information ``` ### 5、正负节点采样 ``` train, train_status, test, test_status = sample.sample_single(g, args.testRatio, max_train_num=args.maxTrainNum) ``` ### 6、抽取节点对的封闭子 ``` net = until.nxG_to_mat(g) #print net train_graphs, test_graphs, max_n_label = subgraphs.singleSubgraphs(net, train, train_status, test, test_status, args.hop, args.maxNodesPerHop, node_information) print('# train: %d, # test: %d' % (len(train_graphs), len(test_graphs))) ``` ### 7、加载网络模型,并在classifier中配置相关参数 ``` cmd_args = cmd_opt.parse_args() cmd_args.feat_dim = max_n_label + 1 cmd_args.attr_dim = node_information.shape[1] cmd_args.latent_dim = [int(x) for x in cmd_args.latent_dim.split('-')] if len(cmd_args.latent_dim) == 1: cmd_args.latent_dim = cmd_args.latent_dim[0] model = classifier.Classifier(cmd_args) optimizer = optim.Adam(model.parameters(), lr=args.learningRate) ``` ### 8、训练和测试 ``` train_idxes = list(range(len(train_graphs))) best_loss = None for epoch in range(args.num_epochs): random.shuffle(train_idxes) model.train() avg_loss = loop_dataset(train_graphs, model, train_idxes, cmd_args.batch_size, optimizer=optimizer) print('\033[92maverage training of epoch %d: loss %.5f acc %.5f auc %.5f\033[0m' % (epoch, avg_loss[0], avg_loss[1], avg_loss[2])) model.eval() test_loss = loop_dataset(test_graphs, model, list(range(len(test_graphs))), cmd_args.batch_size) print('\033[93maverage test of epoch %d: loss %.5f acc %.5f auc %.5f\033[0m' % (epoch, test_loss[0], test_loss[1], test_loss[2])) ``` ### 9、运行结果 ``` average test of epoch 0: loss 0.62392 acc 0.71462 auc 0.72314 loss: 0.51711 acc: 0.80000: 100%|███████████████████████████████████| 76/76 [00:07<00:00, 10.09batch/s] average training of epoch 1: loss 0.54414 acc 0.76895 auc 0.77751 loss: 0.37699 acc: 0.79167: 100%|█████████████████████████████████████| 9/9 [00:00<00:00, 34.07batch/s] average test of epoch 1: loss 0.51981 acc 0.78538 auc 0.79709 loss: 0.43700 acc: 0.84000: 100%|███████████████████████████████████| 76/76 [00:07<00:00, 9.64batch/s] average training of epoch 2: loss 0.49896 acc 0.79184 auc 0.82246 loss: 0.63594 acc: 0.66667: 100%|█████████████████████████████████████| 9/9 [00:00<00:00, 28.62batch/s] average test of epoch 2: loss 0.48979 acc 0.79481 auc 0.83416 loss: 0.57502 acc: 0.76000: 100%|███████████████████████████████████| 76/76 [00:07<00:00, 9.70batch/s] average training of epoch 3: loss 0.50005 acc 0.77447 auc 0.79622 loss: 0.38903 acc: 0.75000: 100%|█████████████████████████████████████| 9/9 [00:00<00:00, 34.03batch/s] average test of epoch 3: loss 0.41463 acc 0.81132 auc 0.86523 loss: 0.54336 acc: 0.76000: 100%|███████████████████████████████████| 76/76 [00:07<00:00, 9.57batch/s] average training of epoch 4: loss 0.44815 acc 0.81711 auc 0.84530 loss: 0.44784 acc: 0.70833: 100%|█████████████████████████████████████| 9/9 [00:00<00:00, 28.62batch/s] average test of epoch 4: loss 0.48319 acc 0.81368 auc 0.84454 loss: 0.36999 acc: 0.88000: 100%|███████████████████████████████████| 76/76 [00:07<00:00, 10.17batch/s] average training of epoch 5: loss 0.39647 acc 0.84184 auc 0.89236 loss: 0.15548 acc: 0.95833: 100%|█████████████████████████████████████| 9/9 [00:00<00:00, 28.62batch/s] average test of epoch 5: loss 0.30881 acc 0.89623 auc 0.95132 ```
GNN核心人才培养计划 - 神经网络项目班是针对神经网络领域的培养计划。神经网络是一种应用于数据的深度学习技术,近年来在社交网络分析、推荐系统、生物信息学等领域取得了显著的成果。 该计划旨在培养具备神经网络理论与实践能力的核心人才。项目班设有一系列培养课程和实践项目,旨在全面提升学员的神经网络算法与模型设计能力。 首先,该计划将开设相关的理论课程,涵盖神经网络的基本原理、算法框架和模型架构等知识。学员将通过学习这些理论知识,深入了解神经网络的工作原理和核心概念。 其次,项目班注重实践能力的培养。学员将有机会参与具体的神经网络项目,应用所学知识解决实际问题。这些实践项目涵盖社交网络分析、推荐系统优化等多个领域,旨在让学员能够熟练地应用神经网络技术解决实际应用问题。 除此之外,该计划还将提供一系列关于神经网络的前沿研究方向的讲座和学术交流活动,帮助学员了解最新的研究进展并培养科研能力。 此外,项目班鼓励学员参与实际项目合作或进行相关科研工作,以提升学员在神经网络领域的实践经验和综合能力。 通过该计划的培养,学员将具备扎实的神经网络理论知识和实践能力,能够在工业界和学术界具有竞争力。该计划旨在推动神经网络领域的研究和发展,培养更多优秀的神经网络核心人才。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Xuxixixixixixix

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值