踩坑记----Batch Normalization引发的INF或NAN

Batch Normalization是众所周知的好用,但Batch Normalization在某些情况下,却会适得其反。

 

在使用别人的模型训练时,往往因为显存的不足,会导致我们的BatchSize无法设置的较高,当我使用BatchSize=4的情况下,开始Loss会稳定下降,但当一定step之后,会在某个Batch时出现Loss突然变大的情况,在这个Batch之后,Loss会变得越来越大。最终出现INF或者NAN的情况。

 

当Loss出现异常值,往往会优先考虑是否Loss的计算方法存在Bug或者模型的输出存在异常,然而经过一系列的排查,花了大把功夫,最终才确定是BatchSize设置过小,而模型过于复杂,里面大量使用了Batch Normalization的原因。

 

在使用Batch Normalization进行训练时,因为mean跟var都为实时计算,所以,当Batch Size过于小时,模型会反而变得更难拟合,而且Loss会跌宕起伏,并且导致梯度变化异常,最终weight也更新异常,最终导致下个Batch往错误的方向越走越远,具体原因大家可以自己再深入研究。于是,当我们使用BN时,并且Batch Size过于小时,要将mean/var进行冻结。方式如下。

https://discuss.pytorch.org/t/how-to-train-with-frozen-batchnorm/12106

 

建议,Batch Size最好在8及以上,当然如果过大也不好,选择合适的Batch Size才有利于模型的快速拟合。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序猿也可以很哲学

让我尝下打赏的味道吧

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值